Logaritmos

Logaritmos

12th Grade

7 Qs

quiz-placeholder

Similar activities

Properties of Logarithms

Properties of Logarithms

11th - 12th Grade

10 Qs

Properties of Exponents and Logarithms

Properties of Exponents and Logarithms

9th - 12th Grade

10 Qs

Laws of logarithms - practice

Laws of logarithms - practice

11th - 12th Grade

11 Qs

Užití vět o logaritmech

Užití vět o logaritmech

11th - 12th Grade

12 Qs

Exponential & Logarithmic Equations Review

Exponential & Logarithmic Equations Review

10th - 12th Grade

10 Qs

QUIZ 16.1

QUIZ 16.1

9th - 12th Grade

10 Qs

6-5 make up quiz

6-5 make up quiz

10th - 12th Grade

10 Qs

Properties of Logarithms

Properties of Logarithms

10th - 12th Grade

12 Qs

Logaritmos

Logaritmos

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Leonardo Trujillo Alarcón

Used 16+ times

FREE Resource

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

¿Cuál es el valor de log8127\log_{81}27   ?

3

 34\frac{3}{4}  

4

 43\frac{4}{3}  

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

El valor de log1.000\log1.000   es:

30

10

100

3

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si  log3=p\log3=p   , ¿cuál es el valor de  log3\log\sqrt{3}  ?

 12+p\frac{1}{2}+p  

 2p2p  

 p2\frac{p}{2}  

 2+p2+p  

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

La Expresión logalogb+4logc\log a-\log b+4\log c  es equivalente a:

 log(ab+4c)\log\left(a-b+4c\right)  

 logac4b\log\frac{a\cdot c^4}{b}  

 log(a(b)4c)\log\left(a\cdot\left(-b\right)\cdot4c\right)  

 logabc4\log\frac{a}{b\cdot c^4}  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Si  log2=p\log2=p  y  log3=q\log3=q  , entonces  log18\log18  es igual a:

 2q+p2q+p  

 2pq2pq  

 2(p+q)2\left(p+q\right)  

 p+q2p+q^2  

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Si log2a\log_2a  es negativo, entonces  aa  es:

Positivo menor que 1

Negativo

Mayor que 1

Menor que 1

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?
I. logba=logalogb\log_ba=\frac{\log a}{\log b}  
II. logab=logalogb\log\frac{a}{b}=\log a-\log b  
III. log(ab)=loga  logb\log\left(a\cdot b\right)=\log a\ \cdot\ \log b  

Solo I

Solo II

Solo I y II

I, II y III