Vectors Progress Test

Vectors Progress Test

12th Grade

10 Qs

quiz-placeholder

Similar activities

Perpendicular Bisector

Perpendicular Bisector

10th - 12th Grade

14 Qs

Geometry Benchmark #1

Geometry Benchmark #1

9th - 12th Grade

11 Qs

Evaluasi Dimensi Tiga (Jarak)

Evaluasi Dimensi Tiga (Jarak)

12th Grade

10 Qs

Dimensi Tiga (Jarak Titik ke Garis)

Dimensi Tiga (Jarak Titik ke Garis)

12th Grade

10 Qs

intersections

intersections

9th - 12th Grade

15 Qs

Apply Chord Properties

Apply Chord Properties

9th - 12th Grade

12 Qs

Dimensi Tiga

Dimensi Tiga

12th Grade

15 Qs

Ôn tập Tổng - Hiệu - Tích vecto

Ôn tập Tổng - Hiệu - Tích vecto

12th Grade

14 Qs

Vectors Progress Test

Vectors Progress Test

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Peter Lego

Used 3+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let u = i - 2j - 3k and v = 2i + j - k. The vector resolute of u perpendicular to v is:

 52-\frac{5}{2} (k)

-5(j)

-2i  -\frac{5}{2} j  -\frac{5}{2} k

i +  12-\frac{1}{2} j  12-\frac{1}{2} k 

2i +  \frac{1}{2} j  -\frac{1}{2} k

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A unit vector in the opposite direction to 2i - 2j + k is:

-2i + 2j - k

 12\frac{1}{2}  (-2i + 2j - k)

 13\frac{1}{3}  (-2i + 2j - k)

 14\frac{1}{4}  (-2i + 2j - k)

 15\frac{1}{5}  (-2i + 2j - k)

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The vectors a = i + j + 2k, b = -i + 2j - 2k, c = i + mk are linearly dependent, where m is a real constant. The value of m is:


13-\frac{1}{3}

0

23\frac{2}{3}

1

2

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

The vectors a = 2i + j - k, b = mi + nj, and c = -i - 3j + k are linearly dependent. If b is a unit vector, then the values of m and n could be:


m = 15m\ =\ -\frac{1}{\sqrt{5}} and n = 25n\ =\ \frac{2}{\sqrt{5}}

m = 15m\ =\ \frac{1}{\sqrt{5}} and n = 25n\ =\ \frac{2}{\sqrt{5}}

m = 15m\ =\ -\frac{1}{\sqrt{5}} and n = 25n\ =\ -\frac{2}{\sqrt{5}}

m = 13m\ =\ \frac{1}{\sqrt{3}} and n = 23n\ =\ -\frac{2}{\sqrt{3}}

m = 2 m\ =\ 2\ and n = 1n\ =\ 1

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If the vectors a = mi m\sqrt{m}  j - 3k and b = mi +  m\sqrt{m}  j + 2k are perpendicular, then:

m = 0

m = 3 and m = -2

m = -3 and m = 2

m = 3

m = -2

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Let a = i + j, b = j + k, and c = 2i - j - 3k. Which of the following is false?

The vectors a and b have the same length

The angle between vectors a and b is  60\degree 

The vector a + c is parallel to the vector a - b

c = 2a - 3b

The vectors a, b, and c are linearly independent

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

A, B, and C are three points in space. To prove that ABC is a right-angled isosceles triangle, it is necessary to show:

ABAC = AB . AC\left|\overline{AB}\right|\left|\overline{AC}\right|\ =\ \overline{AB}\ .\ \overline{AC} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

ABAC = 2AB . AC\left|\overline{AB}\right|\left|\overline{AC}\right|\ =\ \sqrt{2}\overline{AB}\ .\ \overline{AC} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right| and AB . AC = 0\overline{AB}\ .\ \overline{AC}\ =\ 0

AB+BC+CA = 0\overline{AB}+\overline{BC}+\overline{CA}\ =\ \overrightarrow{0} and BA . BC = 0\overline{BA}\ .\ \overline{BC}\ =\ 0

AB + BC + CA = 0\overline{AB}\ +\ \overline{BC}\ +\ \overline{CA}\ =\ \overrightarrow{0} and AB = BC\left|\overline{AB}\right|\ =\ \left|\overline{BC}\right|

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?