Fourier series and statistics

Fourier series and statistics

University

20 Qs

quiz-placeholder

Similar activities

Calculus 1 Quiz 1 - Final Term (USTP - BSME1)

Calculus 1 Quiz 1 - Final Term (USTP - BSME1)

University

15 Qs

DERIVADA TRIGONOMETRICA

DERIVADA TRIGONOMETRICA

University

16 Qs

Integration Rev II

Integration Rev II

University

17 Qs

Differentiation rules[Product, Quotient & Chain Rule]

Differentiation rules[Product, Quotient & Chain Rule]

University

20 Qs

QS3

QS3

University

15 Qs

3.2 Inverse Laplace Transform

3.2 Inverse Laplace Transform

University

20 Qs

1.5 Infinite Limits and Limits at Infinity

1.5 Infinite Limits and Limits at Infinity

10th Grade - University

16 Qs

Integrales

Integrales

University

18 Qs

Fourier series and statistics

Fourier series and statistics

Assessment

Quiz

Mathematics

University

Hard

CCSS
HSF.BF.B.3, HSF.TF.A.2, HSF.TF.A.4

Standards-aligned

Created by

smaheswari MATHEMATICS-HICET

Used 44+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of sin nπn\pi  is

1

0

-1

n

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of cos nπ=n\pi=  ------ and  Cos 0=-------

0 and 0

 (1)n\left(-1\right)^n   and 0

 (1)n\left(-1\right)^n  and 1

1 and 1

3.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of  cos5x dx\int_{ }^{ }\cos5x\ dx  =

5 sin5x

-5sin5x

 sin5x5\frac{\sin5x}{5}  

 sin5x5-\frac{\sin5x}{5}  

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

The value of 0π sin3x dx\int_0^{\pi}\ \sin3x\ dx  

 23\frac{2}{3}  

 23-\frac{2}{3}  

0

 13\frac{1}{3}  

5.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx(x2) =\frac{\text{d}}{\text{d}x}\left(x^2\right)\ =  

x

2

2x

0

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ddx(k)=\frac{\text{d}}{\text{d}x}\left(k\right)=  -------where k is constant

1

k

0

x

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 02π  x sinx dx\int_0^{2\pi}\ \ x\ \sin x\ dx  =

 x(cosx)(sinx)\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|  

 x(cosx)(sinx)\left|x\left(\cos x\right)-\left(\sin x\right)\right|  

 x(cosx)(sinx)02π = 0\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|_0^{2\pi}\ =\ 0  

 x(cosx)(sinx)02π = 2π\left|x\left(-\cos x\right)-\left(-\sin x\right)\right|_0^{2\pi}\ =\ -2\pi  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?