derivadas parciales

derivadas parciales

Professional Development

8 Qs

quiz-placeholder

Similar activities

เกมส์ อัตราการเปลี่ยนแปลงหรรษา

เกมส์ อัตราการเปลี่ยนแปลงหรรษา

Professional Development

10 Qs

Tes Matematika

Tes Matematika

Professional Development

10 Qs

Derivadas parciales Mating-1

Derivadas parciales Mating-1

University - Professional Development

10 Qs

Quiz III

Quiz III

Professional Development

10 Qs

N3-T25-Circunferencia angulos

N3-T25-Circunferencia angulos

Professional Development

10 Qs

Penyederhanaan Bentuk Trigonometri

Penyederhanaan Bentuk Trigonometri

12th Grade - Professional Development

12 Qs

Evaluación refuerzo 2

Evaluación refuerzo 2

1st Grade - Professional Development

12 Qs

Fonctions affines

Fonctions affines

9th Grade - Professional Development

10 Qs

derivadas parciales

derivadas parciales

Assessment

Quiz

Mathematics

Professional Development

Hard

Created by

José Torre

Used 176+ times

FREE Resource

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=x2y22xy2F(x,y)=x^2y^2−2xy^2  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(2,1)P\left(2,1\right)  


 Fx=2\frac{\partial F}{\partial x}=2   Fy=0\frac{\partial F}{\partial y}=0  

 \frac{\partial F}{\partial x}=2   Fy=2\frac{\partial F}{\partial y}=2  

 Fx=0\frac{\partial F}{\partial x}=0   \frac{\partial F}{\partial y}=0  

 Fx=0\frac{\partial F}{\partial x}=0   Fy=2\frac{\partial F}{\partial y}=2  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 θ(r,s)=r2+s2+rs\theta(r,s)=\sqrt{r^2+s^2}+\frac{r}{s}  
Determine el valor de  θr\frac{\partial\theta}{\partial r}  como  θs\frac{\partial\theta}{\partial s}  en el punto  P(3,4)P\left(3,4\right)  

 θr=2720\frac{\partial\theta}{\partial r}=\frac{27}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

 \frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=3980\frac{\partial\theta}{\partial s}=\frac{39}{80} 

 θr=1720\frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=4980\frac{\partial\theta}{\partial s}=\frac{49}{80} 

 θr=3120\frac{\partial\theta}{\partial r}=\frac{31}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=3x3y2x2y2+y3F\left(x,y\right)=3x^3y-2x^2y^2+y^3  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,-2\right)  

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=23 

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=ln(x2+y)F\left(x,y\right)=\ln\left(x^2+y\right)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=23\frac{\partial F}{\partial x}=\frac{2}{3}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=32\frac{\partial F}{\partial x}=\frac{3}{2}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=23\frac{\partial F}{\partial y}=\frac{2}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=32\frac{\partial F}{\partial y}=\frac{3}{2} 

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=e(x2+y2)3F\left(x,y\right)=e^{-\frac{\left(x^2+y^2\right)}{3}}  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=-0.2518341371 

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=0.2518341371 

 Fx=0.2518341371\frac{\partial F}{\partial x}=-0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=-0.1259170685 

 Fx=0.2518341371\frac{\partial F}{\partial x}=0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=0.1259170685 

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=(3x+y)Cos(xy)F\left(x,y\right)=(3x+y)Cos(xy)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=4.962633970\frac{\partial F}{\partial x}=4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=4.962633970 

 Fx=4.962633970\frac{\partial F}{\partial x}=-4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=-10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=-10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=-4.962633970 

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ex(2y2x2)F\left(x,y\right)=e^{-x}(2y^2−x^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=-1.839397205 

 Fx=1.839397205\frac{\partial F}{\partial x}=1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.839397205\frac{\partial F}{\partial x}=-1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=1.839397205 

8.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ln(1+2x2+3y2)F\left(x,y\right)=\ln(1+2x^2+3y^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=415\frac{\partial F}{\partial x}=-\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=\frac{4}{5} 

 Fx=45\frac{\partial F}{\partial x}=\frac{4}{5}   Fy=415\frac{\partial F}{\partial y}=\frac{4}{15}