derivadas parciales

derivadas parciales

Professional Development

8 Qs

quiz-placeholder

Similar activities

Derivadas

Derivadas

University - Professional Development

10 Qs

Chain rule

Chain rule

11th Grade - Professional Development

10 Qs

gtln.gtnn

gtln.gtnn

12th Grade - Professional Development

10 Qs

Regla de la cadena multivariable

Regla de la cadena multivariable

Professional Development

8 Qs

Aptitude

Aptitude

Professional Development

10 Qs

Đạo hàm là đạo hàm ơi

Đạo hàm là đạo hàm ơi

Professional Development

10 Qs

Persamaan Trigonometri

Persamaan Trigonometri

Professional Development

10 Qs

Razones trigonométrica

Razones trigonométrica

Professional Development

10 Qs

derivadas parciales

derivadas parciales

Assessment

Quiz

Mathematics

Professional Development

Hard

Created by

José Torre

Used 176+ times

FREE Resource

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=x2y22xy2F(x,y)=x^2y^2−2xy^2  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(2,1)P\left(2,1\right)  


 Fx=2\frac{\partial F}{\partial x}=2   Fy=0\frac{\partial F}{\partial y}=0  

 \frac{\partial F}{\partial x}=2   Fy=2\frac{\partial F}{\partial y}=2  

 Fx=0\frac{\partial F}{\partial x}=0   \frac{\partial F}{\partial y}=0  

 Fx=0\frac{\partial F}{\partial x}=0   Fy=2\frac{\partial F}{\partial y}=2  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 θ(r,s)=r2+s2+rs\theta(r,s)=\sqrt{r^2+s^2}+\frac{r}{s}  
Determine el valor de  θr\frac{\partial\theta}{\partial r}  como  θs\frac{\partial\theta}{\partial s}  en el punto  P(3,4)P\left(3,4\right)  

 θr=2720\frac{\partial\theta}{\partial r}=\frac{27}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

 \frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=3980\frac{\partial\theta}{\partial s}=\frac{39}{80} 

 θr=1720\frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=4980\frac{\partial\theta}{\partial s}=\frac{49}{80} 

 θr=3120\frac{\partial\theta}{\partial r}=\frac{31}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=3x3y2x2y2+y3F\left(x,y\right)=3x^3y-2x^2y^2+y^3  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,-2\right)  

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=23 

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=ln(x2+y)F\left(x,y\right)=\ln\left(x^2+y\right)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=23\frac{\partial F}{\partial x}=\frac{2}{3}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=32\frac{\partial F}{\partial x}=\frac{3}{2}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=23\frac{\partial F}{\partial y}=\frac{2}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=32\frac{\partial F}{\partial y}=\frac{3}{2} 

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=e(x2+y2)3F\left(x,y\right)=e^{-\frac{\left(x^2+y^2\right)}{3}}  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=-0.2518341371 

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=0.2518341371 

 Fx=0.2518341371\frac{\partial F}{\partial x}=-0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=-0.1259170685 

 Fx=0.2518341371\frac{\partial F}{\partial x}=0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=0.1259170685 

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=(3x+y)Cos(xy)F\left(x,y\right)=(3x+y)Cos(xy)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=4.962633970\frac{\partial F}{\partial x}=4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=4.962633970 

 Fx=4.962633970\frac{\partial F}{\partial x}=-4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=-10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=-10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=-4.962633970 

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ex(2y2x2)F\left(x,y\right)=e^{-x}(2y^2−x^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=-1.839397205 

 Fx=1.839397205\frac{\partial F}{\partial x}=1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.839397205\frac{\partial F}{\partial x}=-1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=1.839397205 

8.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ln(1+2x2+3y2)F\left(x,y\right)=\ln(1+2x^2+3y^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=415\frac{\partial F}{\partial x}=-\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=\frac{4}{5} 

 Fx=45\frac{\partial F}{\partial x}=\frac{4}{5}   Fy=415\frac{\partial F}{\partial y}=\frac{4}{15}