derivadas parciales

derivadas parciales

Professional Development

8 Qs

quiz-placeholder

Similar activities

Evaluación diagnóstica - Matemáticas 2 - 2B

Evaluación diagnóstica - Matemáticas 2 - 2B

1st Grade - Professional Development

12 Qs

Teste - Aula - 1

Teste - Aula - 1

Professional Development

12 Qs

TIU 6

TIU 6

Professional Development

9 Qs

quick M1 quiz

quick M1 quiz

Professional Development

10 Qs

Pendiente de la recta_ Eliana Guajala Vargas

Pendiente de la recta_ Eliana Guajala Vargas

10th Grade - Professional Development

10 Qs

Ingeniería Económica 4a

Ingeniería Económica 4a

University - Professional Development

10 Qs

Regla de tres

Regla de tres

Professional Development

12 Qs

IHSAN

IHSAN

Professional Development

10 Qs

derivadas parciales

derivadas parciales

Assessment

Quiz

Mathematics

Professional Development

Hard

Created by

José Torre

Used 183+ times

FREE Resource

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=x2y22xy2F(x,y)=x^2y^2−2xy^2  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(2,1)P\left(2,1\right)  


 Fx=2\frac{\partial F}{\partial x}=2   Fy=0\frac{\partial F}{\partial y}=0  

 \frac{\partial F}{\partial x}=2   Fy=2\frac{\partial F}{\partial y}=2  

 Fx=0\frac{\partial F}{\partial x}=0   \frac{\partial F}{\partial y}=0  

 Fx=0\frac{\partial F}{\partial x}=0   Fy=2\frac{\partial F}{\partial y}=2  

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 θ(r,s)=r2+s2+rs\theta(r,s)=\sqrt{r^2+s^2}+\frac{r}{s}  
Determine el valor de  θr\frac{\partial\theta}{\partial r}  como  θs\frac{\partial\theta}{\partial s}  en el punto  P(3,4)P\left(3,4\right)  

 θr=2720\frac{\partial\theta}{\partial r}=\frac{27}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

 \frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=3980\frac{\partial\theta}{\partial s}=\frac{39}{80} 

 θr=1720\frac{\partial\theta}{\partial r}=\frac{17}{20}   θs=4980\frac{\partial\theta}{\partial s}=\frac{49}{80} 

 θr=3120\frac{\partial\theta}{\partial r}=\frac{31}{20}   \frac{\partial\theta}{\partial s}=\frac{49}{80} 

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=3x3y2x2y2+y3F\left(x,y\right)=3x^3y-2x^2y^2+y^3  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,-2\right)  

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=-34   Fy=23\frac{\partial F}{\partial y}=-23 

 Fx=34\frac{\partial F}{\partial x}=34   Fy=23\frac{\partial F}{\partial y}=23 

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Sea la función

 F(x,y)=ln(x2+y)F\left(x,y\right)=\ln\left(x^2+y\right)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=23\frac{\partial F}{\partial x}=\frac{2}{3}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=32\frac{\partial F}{\partial x}=\frac{3}{2}   Fy=13\frac{\partial F}{\partial y}=\frac{1}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=23\frac{\partial F}{\partial y}=\frac{2}{3} 

 Fx=13\frac{\partial F}{\partial x}=\frac{1}{3}   Fy=32\frac{\partial F}{\partial y}=\frac{3}{2} 

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=e(x2+y2)3F\left(x,y\right)=e^{-\frac{\left(x^2+y^2\right)}{3}}  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=-0.2518341371 

 Fx=0.1259170685\frac{\partial F}{\partial x}=-0.1259170685   Fy=0.2518341371\frac{\partial F}{\partial y}=0.2518341371 

 Fx=0.2518341371\frac{\partial F}{\partial x}=-0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=-0.1259170685 

 Fx=0.2518341371\frac{\partial F}{\partial x}=0.2518341371   Fy=0.1259170685\frac{\partial F}{\partial y}=0.1259170685 

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=(3x+y)Cos(xy)F\left(x,y\right)=(3x+y)Cos(xy)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=4.962633970\frac{\partial F}{\partial x}=4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=4.962633970 

 Fx=4.962633970\frac{\partial F}{\partial x}=-4.962633970   Fy=10.34141477\frac{\partial F}{\partial y}=-10.34141477 

 Fx=10.34141477\frac{\partial F}{\partial x}=-10.34141477   Fy=4.962633970\frac{\partial F}{\partial y}=-4.962633970 

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ex(2y2x2)F\left(x,y\right)=e^{-x}(2y^2−x^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=-1.839397205 

 Fx=1.839397205\frac{\partial F}{\partial x}=1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.839397205\frac{\partial F}{\partial x}=-1.839397205   Fy=1.019978389\frac{\partial F}{\partial y}=1.019978389 

 Fx=1.019978389\frac{\partial F}{\partial x}=1.019978389   Fy=1.839397205\frac{\partial F}{\partial y}=1.839397205 

8.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Sea la función

 F(x,y)=ln(1+2x2+3y2)F\left(x,y\right)=\ln(1+2x^2+3y^2)  
Determine el valor de  Fx\frac{\partial F}{\partial x}  como  Fy\frac{\partial F}{\partial y}  en el punto  P(1,2)P\left(1,2\right)  

 Fx=415\frac{\partial F}{\partial x}=-\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=-\frac{4}{5} 

 Fx=415\frac{\partial F}{\partial x}=\frac{4}{15}   Fy=45\frac{\partial F}{\partial y}=\frac{4}{5} 

 Fx=45\frac{\partial F}{\partial x}=\frac{4}{5}   Fy=415\frac{\partial F}{\partial y}=\frac{4}{15} 

Discover more resources for Mathematics