Limits Review

Limits Review

11th Grade - University

37 Qs

quiz-placeholder

Similar activities

UJIAN SEKOLAH MATEMATIKA SD ATI 2020

UJIAN SEKOLAH MATEMATIKA SD ATI 2020

12th Grade

40 Qs

Placement Test Activity - Poornima University

Placement Test Activity - Poornima University

University

38 Qs

12 Matematika 2025

12 Matematika 2025

12th Grade

35 Qs

12C9 -LUYỆN THI GDCD 12 - LẦN 1

12C9 -LUYỆN THI GDCD 12 - LẦN 1

12th Grade

40 Qs

Wilberforce Maths GCSE Paper 1 Revision

Wilberforce Maths GCSE Paper 1 Revision

KG - 12th Grade

40 Qs

Kuiz Matematik Sempena Kemerdekaan

Kuiz Matematik Sempena Kemerdekaan

KG - University

41 Qs

DHS HG Circles

DHS HG Circles

10th - 11th Grade

40 Qs

ÔN TẬP VĂN HỌC TRUNG ĐẠI VIỆT NAM

ÔN TẬP VĂN HỌC TRUNG ĐẠI VIỆT NAM

KG - Professional Development

35 Qs

Limits Review

Limits Review

Assessment

Quiz

Mathematics

11th Grade - University

Easy

CCSS
HSF-IF.C.7D, HSF.IF.A.2, HSF.TF.A.4

+1

Standards-aligned

Created by

Catherine Stevens

Used 3+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

37 questions

Show all answers

1.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the the limit.

 limx4(x2+2x3)\lim_{x\longrightarrow-4}\left(x^2+2x-3\right)  

2.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the the limit.

 limx5x+4\lim_{x\longrightarrow5}-\sqrt{x+4}  

Answer explanation

 limx5x+4=5+4=9=3\lim_{x\rightarrow5}-\sqrt{x+4}=-\sqrt{5+4}=-\sqrt{9}=-3  

3.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the the limit.

 limx5  x+4x2+10x+25\lim_{x\longrightarrow5}\ \ \frac{x+4}{x^2+10x+25}  

Answer explanation

 limx5  x+4x2+10x+25= 5+452+10(5)+25=9100\lim_{x\longrightarrow5}\ \ \frac{x+4}{x^2+10x+25}=\ \frac{5+4}{5^2+10\left(5\right)+25}=\frac{9}{100}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Evaluate the the limit.

 limxπ6sin(2x)\lim_{x\longrightarrow\frac{\pi}{6}}-\sin\left(2x\right)  

 32-\frac{\sqrt{3}}{2}  

 32\frac{\sqrt{3}}{2}  

 12\frac{1}{2}  

 12-\frac{1}{2}  

Answer explanation

 limxπ6sin(2x)=sin(2(π6))=sinπ6=32\lim_{x\longrightarrow\frac{\pi}{6}}-\sin\left(2x\right)=-\sin\left(2\left(\frac{\pi}{6}\right)\right)=-\sin\frac{\pi}{6}=-\frac{\sqrt{3}}{2}  

Tags

CCSS.HSF.IF.A.2

5.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the limit, if it exists.

 limx1 x2+4x+3x+1\lim_{x\longrightarrow-1}\ \frac{x^2+4x+3}{x+1}  

Answer explanation

Direct substitution gives  00\frac{0}{0}  result.  You must factor the numerator to  (x+3)(x+1)\left(x+3\right)\left(x+1\right)  first and cancel the binomials  (x+1)\left(x+1\right)  .  Then substitute -1 into the remaining binomial   (x+3)= (1+3)=2\left(x+3\right)=\ \left(-1+3\right)=2  .

6.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Evaluate the limit, if it exists.

 limx2 x2x23x+2\lim_{x\longrightarrow2}\ \frac{x-2}{x^2-3x+2}  

Answer explanation

Direct substitution gives  00\frac{0}{0}  result.  You must factor the denominator to  (x2)(x1)\left(x-2\right)\left(x-1\right)  first and cancel the binomials  (x2)\left(x-2\right)  .  Then substitute 2 into the remaining binomial   1x1=121=1\frac{1}{x-1}=\frac{1}{2-1}=1  .

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Evaluate the limit, if it exists.

 limx2 x12+x12\lim_{x\longrightarrow-2}\ \frac{x}{\frac{1}{2+x}-\frac{1}{2}}  

0

-1

1

2

Answer explanation

Wow, a whole lot of algebra to needs to be completed to simplify the function to  2(2+x)-2\left(2+x\right)  then substitute the -2 into the function to find the limit as x approaches -2 is 0.

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?