Search Header Logo

Vector gradiente

Authored by José Torre

Mathematics

University

Used 22+ times

Vector gradiente
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=xyx+yf\left(x,y\right)=\frac{x-y}{x+y}  en el punto  P=(1,1)P=\left(1,1\right)  

0.70071

-0.7071

0.7071

-0.70071

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=x2yf\left(x,y\right)=\frac{x^2}{y}  en el punto  P=(2,1)P=\left(2,-1\right)  

-5.65068

5.6568

5.65068

-5.6568

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=Cos(πx) Sen(πy)+Sen(2πy)f\left(x,y\right)=Cos\left(\pi x\right)\ Sen\left(\pi y\right)+Sen\left(2\pi y\right)  en el punto  P=(1,12)P=\left(-1,\frac{1}{2}\right)  

-6.2831

6.20831

-6.20831

6.2831

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=2xyzf\left(x,y\right)=2\sqrt{xyz}  en el punto  P=(3,4,3)P=\left(3,-4,-3\right)  

-3.2015

3.215

3.2015

-3.215

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=x23yz+z3f\left(x,y\right)=x^2-3yz+z^3  en el punto  P=(2,1,0)P=\left(2,1,0\right)  

5

-5

25

-25

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=e(x2y2)f\left(x,y\right)=e^{\left(-x^2-y^2\right)}  en el punto  P=(0,0)P=\left(0,0\right)  

1

-1

0

2

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Calcular el modulo del vector gradiente de la función

 f(x,y)=3x7yf\left(x,y\right)=3x-7y  en el punto  P=(17,39)P=\left(17,39\right)  

-7.615

7.615

7.6015

-7.6015

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?