Integrales triples

Integrales triples

University

6 Qs

quiz-placeholder

Similar activities

1st Fundamental Theorem of Calculus

1st Fundamental Theorem of Calculus

11th Grade - University

10 Qs

Slope and Graphing Equations

Slope and Graphing Equations

10th Grade - University

10 Qs

Post Test Integral

Post Test Integral

University

10 Qs

Kalkulus Lanjut

Kalkulus Lanjut

University

10 Qs

Area bajo la curva y entre curvas

Area bajo la curva y entre curvas

University

10 Qs

Аналітична геометрія (теорія)

Аналітична геометрія (теорія)

University

10 Qs

The Ultimate C++ Quiz

The Ultimate C++ Quiz

5th Grade - Professional Development

7 Qs

Propiedades integrales definidas

Propiedades integrales definidas

11th Grade - University

11 Qs

Integrales triples

Integrales triples

Assessment

Quiz

Mathematics

University

Medium

Created by

José Torre

Used 57+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Calcular la siguiente integral:

 010x0xyx dz dy dx\int_0^1\int_0^x\int_0^{xy}x\ dz\ dy\ dx  

1/10

1/5

1/3

1/9

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

240/4

243/4

243/2

240/2

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Calcular el volumen comprendido entre las gráficas de  z=x+y, z=0, y=x, x=0, x=3z=x+y,\ z=0,\ y=x,\ x=0,\ x=3  

 dV\int_{ }^{ }\int_{ }^{ }\int^{ }dV  

25/2

27/2

27/4

25/4

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Integrar la función  f(x,y,z)=zex+yf\left(x,y,z\right)=ze^{x+y}  sobre la región  B=[0,1][0,1][0,1]B=\left[0,1\right]\cdot\left[0,1\right]\cdot\left[0,1\right]   

 (e1)2\frac{\left(e-1\right)}{2}  

 (e1)22\frac{\left(e-1\right)^2}{2}  

 (e1)\left(e-1\right)  

 e2\frac{e}{2}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Evaluar la integral  Rx2Cos(z)dV\int_{ }^{ }\int_{ }^{ }\int_R^{ }x^2Cos\left(z\right)dV  sobre la región  R={x=0, x=1, y=0, x+y=1, z=0, z=π2}R=\left\{x=0,\ x=1,\ y=0,\ x+y=1,\ z=0,\ z=\frac{\pi}{2}\right\}   

1/11

1/10

1/12

1/13

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

Evaluar la integral  Rxyz2dV\int_{ }^{ }\int_{ }^{ }\int_R^{ }xyz^2dV  sobre la región  R={0x1,1y2,0z3}R=\left\{0\le x\le1,-1\le y\le2,0\le z\le3\right\}   

25/4

27/4

29/4

28/3