verifica limiti

verifica limiti

12th Grade - University

20 Qs

quiz-placeholder

Similar activities

latihan soal limit, turunan dan integral

latihan soal limit, turunan dan integral

University

20 Qs

Όρια συναρτήσεων - Συνεχείς συναρτήσεις

Όρια συναρτήσεων - Συνεχείς συναρτήσεις

12th Grade

20 Qs

Himpunan

Himpunan

University

15 Qs

kalkulus

kalkulus

University

15 Qs

Limit Fungsi Aljabar

Limit Fungsi Aljabar

12th Grade

15 Qs

TALLER DE UNIDAD 4

TALLER DE UNIDAD 4

11th - 12th Grade

20 Qs

ลิมิตของฟังก์ชัน

ลิมิตของฟังก์ชัน

12th Grade

20 Qs

STIS (TO 15) 1

STIS (TO 15) 1

12th Grade - University

20 Qs

verifica limiti

verifica limiti

Assessment

Quiz

Mathematics

12th Grade - University

Medium

Created by

marinella calabrese

Used 55+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 ϵ>0      c>0 :   se x>c,  allora f(x)1<ϵ\forall\epsilon>0\ \ \ \exists\ \ \ c>0\ :\ \ \ se\ x>c,\ \ allora\ \left|f\left(x\right)-1\right|<\epsilon  corrisponde a :

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

 limx1f(x)=1\lim_{x\rightarrow1}f\left(x\right)=1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=\infty  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 M>0  c>0  tale che  se x>c allora f(x)>M\forall M>0\ \exists\ c>0\ \ tale\ che\ \ se\ x>c\ allora\ f\left(x\right)>M  

 limx0f(x)=+\lim_{x\rightarrow0}f\left(x\right)=+\infty  

 limxf(x)=+\lim_{x\rightarrow-\infty}f\left(x\right)=+\infty  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  M>  I(x0):  f(x)>M     qualunque    xI(x0), xx0\forall\ M>\exists\ \ I\left(x_0\right):\ \ f\left(x\right)>M\ \ \ \ \ qualunque\ \ \ \ x\in I\left(x_0\right),\ x\ne x_0  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=-\infty  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Sappiamo che:
 (1) limx1f(x)=+\left(1\right)\ \lim_{x\rightarrow1}f\left(x\right)=+\infty   (2) limxh(x)=\left(2\right)\ \lim_{x\rightarrow\infty}h\left(x\right)=\infty   (3) limx+g(x)=2\left(3\right)\ \lim_{x\rightarrow+\infty}g\left(x\right)=2   (4) limx2t(x)=1\left(4\right)\ \lim_{x\rightarrow2}t\left(x\right)=1 

Quale funzione ha un asintoto orizzontale?

f(x)

g(x)

h(x)

t(x)

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  ϵ>0       I(x0): f(x)1 <ϵ    qualunque   xI(x0), xx0\forall\ \epsilon>0\ \ \ \ \ \exists\ \ I\left(x_0\right):\ \left|f\left(x\right)-1\right|\ <\epsilon\ \ \ \ qualunque\ \ \ x\in I\left(x_0\right),\ x\ne x_0  a quale limite corrisponde?

limx+2f(x)=+\lim_{x\rightarrow+2}f\left(x\right)=+\infty

limx1f(x)=+2\lim_{x\rightarrow1}f\left(x\right)=+2

limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1

limx2f(x)=1\lim_{x\rightarrow-2}f\left(x\right)=1

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Come si traduce il seguente limite:
 limx+x2+1=+\lim_{x\rightarrow+\infty}x^2+1=+\infty  

  ϵ>0     c>0 : se x>c allora \forall\ \epsilon>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<ϵ\left|x^2+1\right|<\epsilon  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\   x2+1<Mx^2+1<M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1>Mx^2+1>M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<Mx^2+1<M  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

La scrittura  limx2 (x2+2x)=8\lim_{x\rightarrow2}\ \left(x^2+2x\right)=8   significa:

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a sinistra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a destra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0  , vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8<Mx^2+2x-8<-M , con M>0, vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8>Mx^2+2x-8>-M , con M>0, vi è un intorno di 2 privato di 2.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?