verifica limiti

verifica limiti

12th Grade - University

20 Qs

quiz-placeholder

Similar activities

Ukuran Penyebaran Data

Ukuran Penyebaran Data

12th Grade

15 Qs

Perbaikan Dimensi 3

Perbaikan Dimensi 3

12th Grade

20 Qs

Graphing Trig Review

Graphing Trig Review

10th Grade - University

18 Qs

Me divierto con las Matemáticas LILEGRE 8° y 9° 2020.

Me divierto con las Matemáticas LILEGRE 8° y 9° 2020.

1st Grade - University

20 Qs

Thử thách Toán Tuần 11

Thử thách Toán Tuần 11

5th Grade - University

20 Qs

1.2 OPERASI ASAS ARITMETIK YANG MELIBATKAN INTEGER

1.2 OPERASI ASAS ARITMETIK YANG MELIBATKAN INTEGER

7th - 12th Grade

20 Qs

Numeracy

Numeracy

9th - 12th Grade

22 Qs

BAB 9  POLIGON ASAS

BAB 9 POLIGON ASAS

7th - 12th Grade

17 Qs

verifica limiti

verifica limiti

Assessment

Quiz

Mathematics

12th Grade - University

Practice Problem

Medium

Created by

marinella calabrese

Used 55+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 ϵ>0      c>0 :   se x>c,  allora f(x)1<ϵ\forall\epsilon>0\ \ \ \exists\ \ \ c>0\ :\ \ \ se\ x>c,\ \ allora\ \left|f\left(x\right)-1\right|<\epsilon  corrisponde a :

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

 limx1f(x)=1\lim_{x\rightarrow1}f\left(x\right)=1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=\infty  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 M>0  c>0  tale che  se x>c allora f(x)>M\forall M>0\ \exists\ c>0\ \ tale\ che\ \ se\ x>c\ allora\ f\left(x\right)>M  

 limx0f(x)=+\lim_{x\rightarrow0}f\left(x\right)=+\infty  

 limxf(x)=+\lim_{x\rightarrow-\infty}f\left(x\right)=+\infty  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  M>  I(x0):  f(x)>M     qualunque    xI(x0), xx0\forall\ M>\exists\ \ I\left(x_0\right):\ \ f\left(x\right)>M\ \ \ \ \ qualunque\ \ \ \ x\in I\left(x_0\right),\ x\ne x_0  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=-\infty  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Sappiamo che:
 (1) limx1f(x)=+\left(1\right)\ \lim_{x\rightarrow1}f\left(x\right)=+\infty   (2) limxh(x)=\left(2\right)\ \lim_{x\rightarrow\infty}h\left(x\right)=\infty   (3) limx+g(x)=2\left(3\right)\ \lim_{x\rightarrow+\infty}g\left(x\right)=2   (4) limx2t(x)=1\left(4\right)\ \lim_{x\rightarrow2}t\left(x\right)=1 

Quale funzione ha un asintoto orizzontale?

f(x)

g(x)

h(x)

t(x)

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  ϵ>0       I(x0): f(x)1 <ϵ    qualunque   xI(x0), xx0\forall\ \epsilon>0\ \ \ \ \ \exists\ \ I\left(x_0\right):\ \left|f\left(x\right)-1\right|\ <\epsilon\ \ \ \ qualunque\ \ \ x\in I\left(x_0\right),\ x\ne x_0  a quale limite corrisponde?

limx+2f(x)=+\lim_{x\rightarrow+2}f\left(x\right)=+\infty

limx1f(x)=+2\lim_{x\rightarrow1}f\left(x\right)=+2

limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1

limx2f(x)=1\lim_{x\rightarrow-2}f\left(x\right)=1

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Come si traduce il seguente limite:
 limx+x2+1=+\lim_{x\rightarrow+\infty}x^2+1=+\infty  

  ϵ>0     c>0 : se x>c allora \forall\ \epsilon>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<ϵ\left|x^2+1\right|<\epsilon  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\   x2+1<Mx^2+1<M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1>Mx^2+1>M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<Mx^2+1<M  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

La scrittura  limx2 (x2+2x)=8\lim_{x\rightarrow2}\ \left(x^2+2x\right)=8   significa:

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a sinistra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a destra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0  , vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8<Mx^2+2x-8<-M , con M>0, vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8>Mx^2+2x-8>-M , con M>0, vi è un intorno di 2 privato di 2.

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?