verifica limiti

verifica limiti

12th Grade - University

20 Qs

quiz-placeholder

Similar activities

Limit Tak Hingga

Limit Tak Hingga

12th Grade

20 Qs

1.5 Infinite Limits and Limits at Infinity

1.5 Infinite Limits and Limits at Infinity

10th Grade - University

16 Qs

limit

limit

12th Grade

15 Qs

MATEMATIKA WAJIB KELAS XI

MATEMATIKA WAJIB KELAS XI

University

20 Qs

Basic Derivatives

Basic Derivatives

11th Grade - University

22 Qs

Matematika Peminatan Kelas XII semester ganjil

Matematika Peminatan Kelas XII semester ganjil

12th Grade

20 Qs

End Behavior of Rational Functions Limit Notation

End Behavior of Rational Functions Limit Notation

11th Grade - University

20 Qs

Estimating Limits from Graphs (1)

Estimating Limits from Graphs (1)

12th Grade

20 Qs

verifica limiti

verifica limiti

Assessment

Quiz

Mathematics

12th Grade - University

Medium

Created by

marinella calabrese

Used 55+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 ϵ>0      c>0 :   se x>c,  allora f(x)1<ϵ\forall\epsilon>0\ \ \ \exists\ \ \ c>0\ :\ \ \ se\ x>c,\ \ allora\ \left|f\left(x\right)-1\right|<\epsilon  corrisponde a :

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

 limx1f(x)=1\lim_{x\rightarrow1}f\left(x\right)=1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=\infty  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

 M>0  c>0  tale che  se x>c allora f(x)>M\forall M>0\ \exists\ c>0\ \ tale\ che\ \ se\ x>c\ allora\ f\left(x\right)>M  

 limx0f(x)=+\lim_{x\rightarrow0}f\left(x\right)=+\infty  

 limxf(x)=+\lim_{x\rightarrow-\infty}f\left(x\right)=+\infty  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx+f(x)=1\lim_{x\rightarrow+\infty}f\left(x\right)=1  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  M>  I(x0):  f(x)>M     qualunque    xI(x0), xx0\forall\ M>\exists\ \ I\left(x_0\right):\ \ f\left(x\right)>M\ \ \ \ \ qualunque\ \ \ \ x\in I\left(x_0\right),\ x\ne x_0  

 limx+f(x)=+\lim_{x\rightarrow+\infty}f\left(x\right)=+\infty  

 limx1f(x)=+\lim_{x\rightarrow1}f\left(x\right)=+\infty  

 limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1  

 limx1f(x)=\lim_{x\rightarrow1}f\left(x\right)=-\infty  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Sappiamo che:
 (1) limx1f(x)=+\left(1\right)\ \lim_{x\rightarrow1}f\left(x\right)=+\infty   (2) limxh(x)=\left(2\right)\ \lim_{x\rightarrow\infty}h\left(x\right)=\infty   (3) limx+g(x)=2\left(3\right)\ \lim_{x\rightarrow+\infty}g\left(x\right)=2   (4) limx2t(x)=1\left(4\right)\ \lim_{x\rightarrow2}t\left(x\right)=1 

Quale funzione ha un asintoto orizzontale?

f(x)

g(x)

h(x)

t(x)

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

  ϵ>0       I(x0): f(x)1 <ϵ    qualunque   xI(x0), xx0\forall\ \epsilon>0\ \ \ \ \ \exists\ \ I\left(x_0\right):\ \left|f\left(x\right)-1\right|\ <\epsilon\ \ \ \ qualunque\ \ \ x\in I\left(x_0\right),\ x\ne x_0  a quale limite corrisponde?

limx+2f(x)=+\lim_{x\rightarrow+2}f\left(x\right)=+\infty

limx1f(x)=+2\lim_{x\rightarrow1}f\left(x\right)=+2

limx+f(x)=+1\lim_{x\rightarrow+\infty}f\left(x\right)=+1

limx2f(x)=1\lim_{x\rightarrow-2}f\left(x\right)=1

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Come si traduce il seguente limite:
 limx+x2+1=+\lim_{x\rightarrow+\infty}x^2+1=+\infty  

  ϵ>0     c>0 : se x>c allora \forall\ \epsilon>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<ϵ\left|x^2+1\right|<\epsilon  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\   x2+1<Mx^2+1<M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1>Mx^2+1>M  

  M>0     c>0 : se x>c allora \forall\ M>0\ \ \ \exists\ \ c>0\ :\ se\ x>c\ allora\    x2+1<Mx^2+1<M  

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

La scrittura  limx2 (x2+2x)=8\lim_{x\rightarrow2}\ \left(x^2+2x\right)=8   significa:

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a sinistra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0 , vi è un intervallo illimitato a destra.

fra le soluzioni di  x2+2x8<ϵ\left|x^2+2x-8\right|<\epsilon , con  ϵ>0\epsilon>0  , vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8<Mx^2+2x-8<-M , con M>0, vi è un intorno di 2 privato di 2.

fra le soluzioni di   x2+2x8>Mx^2+2x-8>-M , con M>0, vi è un intorno di 2 privato di 2.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?