LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

11th Grade

10 Qs

quiz-placeholder

Similar activities

Limit Aljabar

Limit Aljabar

11th Grade

15 Qs

Limits and Early Continuity (AP use after 1.12)

Limits and Early Continuity (AP use after 1.12)

10th - 12th Grade

11 Qs

تقدير النهايات بيانيا

تقدير النهايات بيانيا

11th Grade

11 Qs

Limits Practice!

Limits Practice!

11th - 12th Grade

12 Qs

Definition of Derivative

Definition of Derivative

11th Grade - University

10 Qs

Limit Fungsi

Limit Fungsi

11th Grade

10 Qs

Continuity in  an Interval

Continuity in an Interval

11th Grade

10 Qs

Limits visually

Limits visually

9th Grade - University

10 Qs

LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

Assessment

Quiz

Mathematics

11th Grade

Hard

Created by

JULIAN VELÁSQUEZ

Used 10+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

¿Cuál es el valor de este límite?

4

-2

5

-4

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

¿Y este otro límite?

-2

0

±∞

1

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

5

1

9

-9

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx+ f(x)\lim_{x\rightarrow+\infty}\ f\left(x\right)  

 ++\infty  

 00  

 -\infty  

 44  

No existe

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx5 f(x)\lim_{x\rightarrow5}\ f\left(x\right)  

 2-2  

 00  

 -\infty  

 ++\infty  

No existe

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Existe  limx2 f(x)\lim_{x\rightarrow2^{ }}\ f\left(x\right)  ?

Si, y es igual a 22  

No porque  limx2 f(x)limx2+ f(x)\lim_{x\rightarrow2^-}\ f\left(x\right)\ne\lim_{x\rightarrow2^+}\ f\left(x\right)  

Si, y es igual a  44  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Es continua en  x=1x=1  ?

Si, porque  limx1 f(x)=1=f(1)\lim_{x\rightarrow1}\ f\left(x\right)=-1=f\left(1\right)  

No, porque  ∌ f(1)\not\ni\ f\left(1\right)  

No, porque  limx1 f(x)f(1)\lim_{x\rightarrow1}\ f\left(x\right)\ne f\left(1\right)  

No, porque  ∌limx1 f(x)\not\ni\lim_{x\rightarrow1}\ f\left(x\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?