LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

11th Grade

10 Qs

quiz-placeholder

Similar activities

LIMIT FUNGSI ALJABAR

LIMIT FUNGSI ALJABAR

11th Grade

15 Qs

Continuity in  an Interval

Continuity in an Interval

11th Grade

10 Qs

Limits visually

Limits visually

9th Grade - University

10 Qs

Limit Aljabar

Limit Aljabar

11th Grade

15 Qs

LIMITES APLICANDO PROPIEDADES

LIMITES APLICANDO PROPIEDADES

11th - 12th Grade

10 Qs

Limits Practice!

Limits Practice!

11th - 12th Grade

12 Qs

Definition of Derivative

Definition of Derivative

11th Grade - University

10 Qs

Limit Fungsi

Limit Fungsi

11th Grade

10 Qs

LÍMITES Y FUNCIONES CONTINUAS

LÍMITES Y FUNCIONES CONTINUAS

Assessment

Quiz

Mathematics

11th Grade

Hard

Created by

JULIAN VELÁSQUEZ

Used 10+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

¿Cuál es el valor de este límite?

4

-2

5

-4

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

¿Y este otro límite?

-2

0

±∞

1

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

5

1

9

-9

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx+ f(x)\lim_{x\rightarrow+\infty}\ f\left(x\right)  

 ++\infty  

 00  

 -\infty  

 44  

No existe

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

 limx5 f(x)\lim_{x\rightarrow5}\ f\left(x\right)  

 2-2  

 00  

 -\infty  

 ++\infty  

No existe

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Existe  limx2 f(x)\lim_{x\rightarrow2^{ }}\ f\left(x\right)  ?

Si, y es igual a 22  

No porque  limx2 f(x)limx2+ f(x)\lim_{x\rightarrow2^-}\ f\left(x\right)\ne\lim_{x\rightarrow2^+}\ f\left(x\right)  

Si, y es igual a  44  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

¿Es continua en  x=1x=1  ?

Si, porque  limx1 f(x)=1=f(1)\lim_{x\rightarrow1}\ f\left(x\right)=-1=f\left(1\right)  

No, porque  ∌ f(1)\not\ni\ f\left(1\right)  

No, porque  limx1 f(x)f(1)\lim_{x\rightarrow1}\ f\left(x\right)\ne f\left(1\right)  

No, porque  ∌limx1 f(x)\not\ni\lim_{x\rightarrow1}\ f\left(x\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?