Search Header Logo

Trigonometria

Authored by Ana Pereira

Mathematics

11th Grade

Used 26+ times

Trigonometria
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Um ângulo tem 75°75\degree de amplitude. A sua amplitude, em radianos, é:

 5π6\frac{5\pi}{6}  

 6π5\frac{6\pi}{5}  

 5π12\frac{5\pi}{12}  

 12π5\frac{12\pi}{5}  

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Na circunferência trigonométrica, o ângulo de amplitude  2125° 2125\degree\   pertence ao:

1ºQuadrante

2ºQuadrante

3ºQuadrante

4ºQuadrante

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Na circunferência trigonométrica, o ângulo de amplitude 13π4 rad-\frac{13\pi}{4}\ rad pertence ao: 


1ºQuadrante

2ºQuadrante

3ºQuadrante

4ºQuadrante

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Numa circunferência com 6 cm de raio, um arco com 3 cm de comprimento tem amplitude igual a:

 π rad\pi\ rad  

 π2 rad\frac{\pi}{2}\ rad  

 12 rad\frac{1}{2}\ rad  

 2 rad2\ rad  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Se ] \frac{3\pi}{2},\ 2\pi [ qual das expressões representa um número positivo?

 cosα×tgα\cos\alpha\times tg\alpha  

 tg α+sen αtg\ \alpha+sen\ \alpha  

 senα×cosαsen\alpha\times\cos\alpha  

 tg αsen α\frac{tg\ \alpha}{sen\ \alpha}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

 α2ºQ e cosα=45 pelo que senα+tgα\alpha\in2ºQ\ e\ \cos\alpha=-\frac{4}{5}\ pelo\ que\ sen\alpha+tg\alpha 

 320\frac{3}{20}  

 2027\frac{20}{27}  

 2720\frac{27}{20}  

 320-\frac{3}{20}  

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O contradomínio da função f(x)=52sen(xπ3)f\left(x\right)=5-2sen\left(x-\frac{\pi}{3}\right)  

é:

 [3,7]\left[-3,7\right]  

 [2,5]\left[2,5\right]  

 [1,1]\left[-1,1\right]  

 [3,7]\left[3,7\right]  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?