Quick Polar Derivatives

Quick Polar Derivatives

11th - 12th Grade

5 Qs

quiz-placeholder

Similar activities

Reciprocal Trig Ratios

Reciprocal Trig Ratios

9th - 12th Grade

10 Qs

Sum/Difference & Double Angle Formulas

Sum/Difference & Double Angle Formulas

10th - 12th Grade

10 Qs

مراجعة على المتطابقات والمعادلات المثلثية

مراجعة على المتطابقات والمعادلات المثلثية

11th Grade

10 Qs

Finding Quiz Values of Any angle

Finding Quiz Values of Any angle

10th - 12th Grade

10 Qs

Double Angle Identities

Double Angle Identities

10th - 12th Grade

10 Qs

Simplifying Trig Expressions

Simplifying Trig Expressions

10th - 12th Grade

10 Qs

Lección de 2do BGU SEMANA #28

Lección de 2do BGU SEMANA #28

11th Grade

10 Qs

PC - Trig Functions and Solving Triangles

PC - Trig Functions and Solving Triangles

10th - 12th Grade

9 Qs

Quick Polar Derivatives

Quick Polar Derivatives

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

CCSS
HSF.TF.B.7

Standards-aligned

Created by

Tisha Bowman-Ashby

Used 16+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Given r=3+2sinθr=3+2\sin\theta , find drdθ\frac{dr}{d\theta} at θ=π6\theta=\frac{\pi}{6}  

 3\sqrt{3}  

 11  

 3+33+\sqrt{3}  

 44  

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Given r=3+2sinθr=3+2\sin\theta , find dxdθ\frac{dx}{d\theta} at θ=π6\theta=\frac{\pi}{6}  

 322\frac{\sqrt{3}}{2}-2  

 12-\frac{1}{2}  

 32+1\frac{\sqrt{3}}{2}+1  

 12\frac{1}{2}  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Given r=3+2sinθr=3+2\sin\theta , find dydθ\frac{dy}{d\theta} at θ=π6\theta=\frac{\pi}{6}  

 532\frac{5\sqrt{3}}{2}  

 732\frac{7\sqrt{3}}{2}  

 334\frac{3\sqrt{3}}{4}  

 934\frac{9\sqrt{3}}{4}  

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Given r=3+2sinθr=3+2\sin\theta , find  dydx\frac{dy}{dx} at θ=π6\theta=\frac{\pi}{6}  

 53-5\sqrt{3}  

 535\sqrt{3}  

 153\frac{1}{5\sqrt{3}}  

 153-\frac{1}{5\sqrt{3}}  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Given r=3+2sinθr=3+2\sin\theta , find the line tangent to the curve at θ=π6\theta=\frac{\pi}{6}

y2=53(x23)y-2=-5\sqrt{3}\left(x-2\sqrt{3}\right)

y23=53(x2)y-2\sqrt{3}=-5\sqrt{3}\left(x-2\right)

y33=53(x33)y-3-\sqrt{3}=-5\sqrt{3}\left(x-3-\sqrt{3}\right)

y532=53(x+12)y-\frac{5\sqrt{3}}{2}=-5\sqrt{3}\left(x+\frac{1}{2}\right)

Tags

CCSS.HSF.TF.B.7

Discover more resources for Mathematics