Search Header Logo

Logarithms and Exponential Derivative

Authored by Adam Hosler

Mathematics

11th - 12th Grade

CCSS covered

Used 11+ times

Logarithms and Exponential Derivative
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=ex35x+1y=e^{x^3-5x+1}  

 dydx=ex35x+1(3x25)\frac{dy}{dx}=e^{x^3-5x+1}\left(3x^2-5\right)  

 dydx=3x2ex35x+1\frac{dy}{dx}=3x^2e^{x^3-5x+1}  

 dydx=ex35x+1(x35x+1)\frac{dy}{dx}=e^{x^3-5x+1}\left(x^3-5x+1\right)  

 dydx=3x25\frac{dy}{dx}=3x^2-5  

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=ln(5x4)y=\ln\left(5x^4\right)  

 dydx=4x\frac{dy}{dx}=\frac{4}{x}  

 dydx=20x3\frac{dy}{dx}=20x^3  

 dydx=15x4\frac{dy}{dx}=\frac{1}{5x^4}  

 dydx=20x3\frac{dy}{dx}=20x^3  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=ln(sinx)y=\ln\left(\sin x\right)  

 dydx=1sinx\frac{dy}{dx}=\frac{1}{\sin x}  

 dydx=cotx\frac{dy}{dx}=\cot x  

 dydx=tanx\frac{dy}{dx}=\tan x  

 dydx=1cosx\frac{dy}{dx}=\frac{1}{\cos x}  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=log4xy=\log_4x  

 dydx=xln4\frac{dy}{dx}=\frac{x}{\ln4}  

 dydx=xln4\frac{dy}{dx}=x\ln4  

 dydx=ln4x\frac{dy}{dx}=\frac{\ln4}{x}  

 dydx=1xln4\frac{dy}{dx}=\frac{1}{x\ln4}  

Tags

CCSS.HSF-IF.C.8B

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=log(3x2)y=\log\left(3x^2\right)  

 dydx=6xln10\frac{dy}{dx}=\frac{6x}{\ln10}  

 dydx=6xln10\frac{dy}{dx}=6x\ln10  

 dydx=ln106x\frac{dy}{dx}=\frac{\ln10}{6x}  

 dydx=16xln10\frac{dy}{dx}=\frac{1}{6x\ln10}  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=3xy=3^x  

 dydx=3xln3\frac{dy}{dx}=3^x\ln3  

 dydx=3xln3\frac{dy}{dx}=3^{x\ln3}  

 dydx=3xln3\frac{dy}{dx}=\frac{3^x}{\ln3}  

 dydx=ln3x\frac{dy}{dx}=\ln3^x  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find the derivative of the function with respect to x:

 y=9x28y=9^{x^2-8}  

 dydx=9x28\frac{dy}{dx}=9^{x^2-8}  

 dydx=9x28×ln9\frac{dy}{dx}=9^{x^2-8}\times\ln9  

 dydx=9x28×2x\frac{dy}{dx}=9^{x^2-8}\times2x  

 dydx=9x28×ln9×2x\frac{dy}{dx}=9^{x^2-8}\times\ln9\times2x  

Tags

CCSS.HSF-IF.C.8B

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?