6C - 6D Review

6C - 6D Review

Assessment

Quiz

Created by

S W

Mathematics

12th Grade

3 plays

Medium

CCSS
HSF.IF.B.4, HSA.CED.A.2, HSA.SSE.A.1

+8

Student preview

quiz-placeholder

14 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Evaluate in terms of area

02 f(x) dx

4

-4

4 + 2π

-4 - 2π

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

CCSS.HSG.GMD.A.1

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find F'(x)

A

B

C

D

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image
-cos(x6)
sin(x6)
2x sin(x3)
2x sin(x6)

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image
-1
-2
1/2
-1/2

Tags

CCSS.HSA.CED.A.2

CCSS.HSA.REI.D.10

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Calculate  62f(x) dx\int_6^2f\left(x\right)\ dx  

1

2

4

-4

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image
Based on the table, use a left Riemann sum and 4 sub-intervals to estimate the Area under the curve. (Choose the correct set-up.) 
5(3) + 1(4) + 2(5) + 1(7)
5(4) + 1(5) + 2(7) + 1(6)
5(3) + 6(4) + 8(5) + 9(7)
0(3) + 5(4) + 6(5) + 8(7)

Tags

CCSS.HSA.SSE.A.1

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 limni=1n[(5in)2+5in+1]5n\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\left(\frac{5i}{n}\right)^2+\frac{5i}{n}+1\right]\frac{5}{n}  in integral notation would be 

 05(x2+x+1)dx\int_0^5\left(x^2+x+1\right)dx  

 56(x2+x+1)dx\int_5^6\left(x^2+x+1\right)dx  

 01((5x)2+5x+1)dx\int_0^1\left(\left(5x\right)^2+5x+1\right)dx  

 010(x22+x2+1)dx\int_0^{10}\left(\frac{x^2}{2}+\frac{x}{2}+1\right)dx  

8.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Find F'(x)

A

B

C

D

9.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image
1 ⁄ (1+x3
(3x2) ⁄ (1+x3
x3  ⁄ (1+x3
HELP

Tags

CCSS.HSA.APR.A.1

CCSS.HSA.APR.D.6

CCSS.HSA.APR.D.7

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

10.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 0πcosxdx \int_0^{\pi}\cos xdx\   as limit of a sum is equivalent to

 limni=1n[cos(πin)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(in)]in\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{i}{n}  

 limni=1n[cos(πin)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{\pi i}{n}\right)\right]\frac{\pi}{n}  

 limni=1n[cos(in)]πn\lim_{n\rightarrow\infty}\sum_{i=1}^n\left[\cos\left(\frac{i}{n}\right)\right]\frac{\pi}{n}  

Explore all questions with a free account

or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?