MATH34032_Video2followup

MATH34032_Video2followup

University

5 Qs

quiz-placeholder

Similar activities

Pretest Data Mining 4

Pretest Data Mining 4

University - Professional Development

10 Qs

QUIZ KPPS PEMILU 2019

QUIZ KPPS PEMILU 2019

University

10 Qs

KUIS 5. PDB DENGAN NILAI AWAL DAN SYARAT BATAS

KUIS 5. PDB DENGAN NILAI AWAL DAN SYARAT BATAS

University

6 Qs

ALGEBRA

ALGEBRA

University

5 Qs

tema 11 integral por sustitución

tema 11 integral por sustitución

University

10 Qs

Integration by Substitution

Integration by Substitution

University

10 Qs

U-sub Day 1

U-sub Day 1

11th Grade - University

6 Qs

Диференціальні рівняння

Диференціальні рівняння

University

10 Qs

MATH34032_Video2followup

MATH34032_Video2followup

Assessment

Quiz

Mathematics

University

Hard

Created by

Sean Holman

Used 5+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

In general, how many solutions are there for a linear second order ODE?

Two solutions.

One solution.

Infinitely many solutions.

No solutions.

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The general solution of a inhomogeneous linear second order ODE takes the form

 u(x)=c1u1(x)+c2u2(x)+up(x).u\left(x\right)=c_1u_1\left(x\right)+c_2u_2\left(x\right)+u_p\left(x\right). The first part of this solution,  c1u1(x)+c1u2(x),c_1u_1\left(x\right)+c_1u_2\left(x\right),  is ... 

... a particular solution.

... a general solution of the corresponding homogeneous ODE.

... the complementarity solution.

... always of the form  c1em+x+c2emx.c_1e^{m_+x}+c_2e^{m_-x}.  

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is a complementary solution for the ODE u2u3u=1?u''-2u'-3u=1?  

 uc(x)=c1e3x+c2exu_c\left(x\right)=c_1e^{3x}+c_2e^{-x}  

 uc(x)=c1ex+c2e3xu_c\left(x\right)=c_1e^x+c_2e^{-3x}  

 uc(x)=13u_c\left(x\right)=-\frac{1}{3}  

 uc(x)=c1x+c2x3u_c\left(x\right)=c_1x+c_2x^{-3}  

4.

MULTIPLE SELECT QUESTION

2 mins • 1 pt

Which of the following are general solutions of the ODE  u10u+25u=0?u''-10u'+25u=0? (Choose all options that are correct.)

 u(x)=c1(x+1)e5x+c2(x1)e5xu\left(x\right)=c_1\left(x+1\right)e^{5x}+c_2\left(x-1\right)e^{5x}  

 u(x)=c1e5x+c2xe5xu\left(x\right)=c_1e^{5x}+c_2xe^{5x}  

 u(x)=c1e5x+c2e25xu\left(x\right)=c_1e^{5x}+c_2e^{25x}  

 u(x)=c1e5x+c2ln(x)e5xu\left(x\right)=c_1e^{5x}+c_2\ln\left(x\right)e^{5x}  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find a general solution for the ODE x2u+2xu2u=0x^2u''+2xu'-2u=0  on the domain  x>0x>0 .

 u(x)=c1x+c2x2u\left(x\right)=c_1x+c_2x^{-2}  

 u(x)=c1x2+c2x1u\left(x\right)=c_1x^2+c_2x^{-1}  

 u(x)=c1x2+c2ln(x)x2u\left(x\right)=c_1x^{-2}+c_2\ln\left(x\right)x^{-2}  

 u(x)=c1ex+c2e2xu\left(x\right)=c_1e^x+c_2e^{-2x}