IVT, EVT, MVT

IVT, EVT, MVT

12th Grade

7 Qs

quiz-placeholder

Similar activities

Aporte 3P1Q Matemática 3roBach

Aporte 3P1Q Matemática 3roBach

12th Grade

10 Qs

SOLVING EQUATIONS

SOLVING EQUATIONS

12th Grade

10 Qs

二年级 数学 20/10 乘除法复习 小测试

二年级 数学 20/10 乘除法复习 小测试

1st - 12th Grade

10 Qs

MATRIKS

MATRIKS

12th Grade

10 Qs

MEMORIA 2022

MEMORIA 2022

9th - 12th Grade

10 Qs

Matemática Básica II

Matemática Básica II

12th Grade

10 Qs

Determinantes

Determinantes

10th - 12th Grade

11 Qs

Maths Revision Quiz (1) - Grade 3

Maths Revision Quiz (1) - Grade 3

3rd Grade - University

10 Qs

IVT, EVT, MVT

IVT, EVT, MVT

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Medium

Created by

Kathryn Dempsey

Used 26+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

7 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

IVT

EVT

MVT

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

IVT

EVT

MVT

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

IVT

EVT

MVT

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

IVT

EVT

MVT

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

The Mean Value Theorem can be applied to which of the following functions on the closed interval [-5, 5]?

 f(x)=1sinxf\left(x\right)=\frac{1}{\sin x}  

 f(x)=x1x1f\left(x\right)=\frac{x-1}{\left|x-1\right|}  

 f(x)=x2x236f\left(x\right)=\frac{x^2}{x^2-36}  

 f(x)=x2x24f\left(x\right)=\frac{x^2}{x^2-4}  

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Selected values of the differentiable function f are given in the table above. What are the few possible numbers of c in the interval [1,9] for which the Mean Value Theorem guarantees

 f(c)=6f'\left(c\right)=6  ?

0

1

2

3

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

f has a relative minimum at = -1

f has a relative maximum at x = -1

f has neither a relative minimum nor a relative maximum at
  x=1x=-1  

There is insufficient information to determine whether f has a relative minimum, a relative maximum, or neither at x=-1