Search Header Logo

Intercept Form

Authored by Teresa Sauls

Mathematics

9th - 10th Grade

CCSS covered

Used 17+ times

Intercept Form
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is another way to say "where a function crosses the x-axis"?

x-intercept

zero

root

all of these.

solution

Tags

CCSS.HSF-IF.C.7C

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What does intercept form of a quadratic equation look like?

y=ax2+bx+c

y=a(x-h)2+k

y=a(x-p)(x-q)

Tags

CCSS.HSA.SSE.A.2

CCSS.HSA.SSE.B.3

3.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Media Image

Find the roots and a point on the quadratic, then find the intercept form for each quadratic.

y=(x-5)(x-1)

y=(x+5)(x+1)

y=x2 +6x+5

y=2(x-5)(x-1)

4.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Media Image

What is the equation for the graph in intercept form?

y = -2(x-5)(x-3)

y = - (x-5)(x-3)

y = - (x+5)(x+3)

y = - x2+8x+15

Tags

CCSS.HSF-IF.C.7A

5.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Find the quadratic function of the graph that passes through the given points,
(-3,0), (-2,8), & (1,0) in intercept form.

 y=811(x+3)(x1)y=-\frac{8}{11}\left(x+3\right)\left(x-1\right) 

 y=(x+3)(x1)y=\left(x+3\right)\left(x-1\right) 

 y=x2+2x3y=x^2+2x-3 

 y=83(x+3)(x1)y=-\frac{8}{3}\left(x+3\right)\left(x-1\right) 

6.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Given the roots and a point on the quadratic, find the intercept form for each quadratic.

Roots are 3, -4 and the y-int is 6.

f(x)=12(x3)(x+4)f\left(x\right)=-\frac{1}{2}\left(x-3\right)\left(x+4\right)

f(x)=12(x3)(x+4)f\left(x\right)=\frac{1}{2}\left(x-3\right)\left(x+4\right)

f(x)=(x3)(x+4)f\left(x\right)=\left(x-3\right)\left(x+4\right)

f(x)=(x+3)(x4)f\left(x\right)=\left(x+3\right)\left(x-4\right)

7.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

Given the roots and a point on the quadratic, find the intercept form for each quadratic.
Roots are  2±32\pm\sqrt{3}  and y-int is 3 

 y=(x2+3)(x23)y=\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)  

 y=3(x2+3)(x23)y=3\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)  

 y=3(x+2+3)(x+23)y=3\left(x+2+\sqrt{3}\right)\left(x+2-\sqrt{3}\right)  

 y=(x+2+3)(x+23)y=\left(x+2+\sqrt{3}\right)\left(x+2-\sqrt{3}\right)  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?