UNIT II- FUNCTIONS OF SEVERAL VARIABLES

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

12th Grade - University

35 Qs

quiz-placeholder

Similar activities

คณิตศาสตร์พื้นฐานอาชีพ

คณิตศาสตร์พื้นฐานอาชีพ

1st Grade - University

30 Qs

Matemática - Propulsão

Matemática - Propulsão

7th - 12th Grade

32 Qs

ÔN TẬP TOÁN 7- THỐNG KÊ

ÔN TẬP TOÁN 7- THỐNG KÊ

1st Grade - University

34 Qs

Rectas y ángulos

Rectas y ángulos

12th Grade

31 Qs

MGNF - 47

MGNF - 47

University - Professional Development

40 Qs

PAS 10 ANIMASI

PAS 10 ANIMASI

12th Grade

35 Qs

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA

8th - 12th Grade

33 Qs

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

Assessment

Quiz

Mathematics

12th Grade - University

Medium

Created by

Shyam Kannan

Used 6+ times

FREE Resource

AI

Enhance your content

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

35 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 If u and v are functions of x and y then u and v are said to be functionally related if ,

 J=(u ,v)(x , y) = 1J=\frac{\partial\left(u\ ,v\right)}{\partial\left(x\ ,\ y\right)}\ =\ 1  

 J = (u , v)(x , y) = 0J\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ 0  

 J = (u , v)(x , y) = J\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \infty  

None of these

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If u is a homogeneous function of degree ' n' in x and y , then

xux + y uy = nx\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ n

xux + y ux = nux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial x}\ =\ nu

xux + y uy = nux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ nu

xux + y uy = ux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ u

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If u , v are functions of r, s and r , s are functions of x , y then

(u , v)(x , y) = (u , v)(r , s) ×(u , v)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (u , v)(r , s) ×(r , s)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (x , v)(r , s) ×(r , s)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(x\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (u , v)(r , s) ×(r , s)(u , v)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(u\ ,\ v\right)}

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

For function f(x,y) of two variables condition for minimum at certain point is

rt s2 > 0 and r > 0rt\ -\ s^2\ >\ 0\ and\ r\ >\ 0

rt s2 < 0 and r < 0rt\ -\ s^2\ <\ 0\ and\ r\ <\ 0

rt s2 > 0 and r < 0rt\ -\ s^2\ >\ 0\ and\ r\ <\ 0

rt s2 = 0 and r > 0rt\ -\ s^2\ =\ 0\ and\ r\ >\ 0

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 x = rcosθ , y = rsinθ then (r, θ)(x , y) = ?x\ =\ r\cos\theta\ ,\ y\ =\ r\sin\theta\ then\ \frac{\partial\left(r,\ \theta\right)}{\partial\left(x\ ,\ y\right)}\ =\ ?  

If

0

1

 1r\frac{1}{r}  

 rr  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If  f(x , y ,z)f\left(x\ ,\ y\ ,z\right)  be a function of  x , y , zx\ ,\ y\ ,\ z   which is to be examined for maximum or minimum value.Let the variables  x , y , zx\ ,\ y\ ,\ z   be connected by the relation  ϕ(x , y ,z) = 0 \phi\left(x\ ,\ y\ ,z\right)\ =\ 0\   then by Lagrange's method of multiplier....

 fx +λ ϕx=1 ,fy +λ ϕy =1 ,fz +λ ϕz = 1\frac{\partial f}{\partial x}\ +\lambda\ \frac{\partial\phi}{\partial x}=1\ ,\frac{\partial f}{\partial y}\ +\lambda\ \frac{\partial\phi}{\partial y}\ =1\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =\ 1  

 fx +λ ϕx =0 ,fy+λ ϕy=0 ,fz +λ ϕz =0\frac{\partial f}{\partial x}\ +\lambda\ \frac{\partial\phi}{\partial x}\ =0\ ,\frac{\partial f}{\partial y}+\lambda\ \frac{\partial\phi}{\partial y}=0\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =0  

 fx+λ ϕx =1 ,fy+λ ϕy =0 ,fz +λ ϕz =1\frac{\partial f}{\partial x}+\lambda\ \frac{\partial\phi}{\partial x}\ =1\ ,\frac{\partial f}{\partial y}+\lambda\ \frac{\partial\phi}{\partial y}\ =0\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =1  

None of these

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 If u = x + yx  y and v = x  y(x  y)2 If\ u\ =\ \frac{x\ +\ y}{x\ -\ y}\ and\ v\ =\ \frac{x\ -\ y}{\left(x\ -\ y\right)^2}\   then the relation is ....

 u2 = 1+4vu^2\ =\ 1+4v  

 u = 1+ 4 v2u\ =\ 1+\ 4\ v^2  

 u2 = 4vu^2\ =\ 4v  

 u2 = u+4vu^2\ =\ u+4v  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?