UNIT II- FUNCTIONS OF SEVERAL VARIABLES

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

12th Grade - University

35 Qs

quiz-placeholder

Similar activities

ATM Trig Test Review

ATM Trig Test Review

11th - 12th Grade

30 Qs

Circles Review (This is a grade!!)

Circles Review (This is a grade!!)

9th - 12th Grade

35 Qs

PROBLEMARIO - TRIGONOMETRÍA

PROBLEMARIO - TRIGONOMETRÍA

12th Grade

30 Qs

Đề số 3

Đề số 3

University

30 Qs

Shape Your Math (Algebra)

Shape Your Math (Algebra)

12th Grade - University

30 Qs

MIDTERM FIRST QUIZ

MIDTERM FIRST QUIZ

University

30 Qs

Asesmen akhir semester kelas 9

Asesmen akhir semester kelas 9

12th Grade

30 Qs

SOAL TO MATEMATIKA SMPN Satap Cipinang

SOAL TO MATEMATIKA SMPN Satap Cipinang

12th Grade

40 Qs

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

UNIT II- FUNCTIONS OF SEVERAL VARIABLES

Assessment

Quiz

Mathematics

12th Grade - University

Practice Problem

Medium

Created by

Shyam Kannan

Used 6+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

35 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 If u and v are functions of x and y then u and v are said to be functionally related if ,

 J=(u ,v)(x , y) = 1J=\frac{\partial\left(u\ ,v\right)}{\partial\left(x\ ,\ y\right)}\ =\ 1  

 J = (u , v)(x , y) = 0J\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ 0  

 J = (u , v)(x , y) = J\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \infty  

None of these

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If u is a homogeneous function of degree ' n' in x and y , then

xux + y uy = nx\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ n

xux + y ux = nux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial x}\ =\ nu

xux + y uy = nux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ nu

xux + y uy = ux\frac{\partial u}{\partial x}\ +\ y\ \ \frac{\partial u}{\partial y}\ =\ u

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If u , v are functions of r, s and r , s are functions of x , y then

(u , v)(x , y) = (u , v)(r , s) ×(u , v)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (u , v)(r , s) ×(r , s)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (x , v)(r , s) ×(r , s)(x , y)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(x\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(x\ ,\ y\right)}

(u , v)(x , y) = (u , v)(r , s) ×(r , s)(u , v)\frac{\partial\left(u\ ,\ v\right)}{\partial\left(x\ ,\ y\right)}\ =\ \frac{\partial\left(u\ ,\ v\right)}{\partial\left(r\ ,\ s\right)}\ \times\frac{\partial\left(r\ ,\ s\right)}{\partial\left(u\ ,\ v\right)}

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

For function f(x,y) of two variables condition for minimum at certain point is

rt s2 > 0 and r > 0rt\ -\ s^2\ >\ 0\ and\ r\ >\ 0

rt s2 < 0 and r < 0rt\ -\ s^2\ <\ 0\ and\ r\ <\ 0

rt s2 > 0 and r < 0rt\ -\ s^2\ >\ 0\ and\ r\ <\ 0

rt s2 = 0 and r > 0rt\ -\ s^2\ =\ 0\ and\ r\ >\ 0

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 x = rcosθ , y = rsinθ then (r, θ)(x , y) = ?x\ =\ r\cos\theta\ ,\ y\ =\ r\sin\theta\ then\ \frac{\partial\left(r,\ \theta\right)}{\partial\left(x\ ,\ y\right)}\ =\ ?  

If

0

1

 1r\frac{1}{r}  

 rr  

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

If  f(x , y ,z)f\left(x\ ,\ y\ ,z\right)  be a function of  x , y , zx\ ,\ y\ ,\ z   which is to be examined for maximum or minimum value.Let the variables  x , y , zx\ ,\ y\ ,\ z   be connected by the relation  ϕ(x , y ,z) = 0 \phi\left(x\ ,\ y\ ,z\right)\ =\ 0\   then by Lagrange's method of multiplier....

 fx +λ ϕx=1 ,fy +λ ϕy =1 ,fz +λ ϕz = 1\frac{\partial f}{\partial x}\ +\lambda\ \frac{\partial\phi}{\partial x}=1\ ,\frac{\partial f}{\partial y}\ +\lambda\ \frac{\partial\phi}{\partial y}\ =1\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =\ 1  

 fx +λ ϕx =0 ,fy+λ ϕy=0 ,fz +λ ϕz =0\frac{\partial f}{\partial x}\ +\lambda\ \frac{\partial\phi}{\partial x}\ =0\ ,\frac{\partial f}{\partial y}+\lambda\ \frac{\partial\phi}{\partial y}=0\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =0  

 fx+λ ϕx =1 ,fy+λ ϕy =0 ,fz +λ ϕz =1\frac{\partial f}{\partial x}+\lambda\ \frac{\partial\phi}{\partial x}\ =1\ ,\frac{\partial f}{\partial y}+\lambda\ \frac{\partial\phi}{\partial y}\ =0\ ,\frac{\partial f}{\partial z}\ +\lambda\ \frac{\partial\phi}{\partial z}\ =1  

None of these

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 If u = x + yx  y and v = x  y(x  y)2 If\ u\ =\ \frac{x\ +\ y}{x\ -\ y}\ and\ v\ =\ \frac{x\ -\ y}{\left(x\ -\ y\right)^2}\   then the relation is ....

 u2 = 1+4vu^2\ =\ 1+4v  

 u = 1+ 4 v2u\ =\ 1+\ 4\ v^2  

 u2 = 4vu^2\ =\ 4v  

 u2 = u+4vu^2\ =\ u+4v  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?