Termodinamica 4

Termodinamica 4

University

23 Qs

quiz-placeholder

Similar activities

Centrifugal Pump

Centrifugal Pump

University

18 Qs

8th Grade SOL Practice 1 Physical Science

8th Grade SOL Practice 1 Physical Science

KG - University

20 Qs

Gerak Melingkar Beraturan

Gerak Melingkar Beraturan

11th Grade - University

20 Qs

Untitled Quiz

Untitled Quiz

10th Grade - University

24 Qs

 2025 מחלק מתח  ומחלק זרם

2025 מחלק מתח ומחלק זרם

University

25 Qs

IRM et magnétisme

IRM et magnétisme

University

20 Qs

Fisika Modern (UAS)

Fisika Modern (UAS)

University

20 Qs

Termodinamica 4

Termodinamica 4

Assessment

Quiz

Physics

University

Easy

Created by

N37 001743

Used 12+ times

FREE Resource

23 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

what is the correct expression of the Gibbs-Duhem equation?

[MP]T,x dP+[MT]P,x dT + xi dMi\left[\frac{\partial M}{\partial P}\right]_{T,x}\ dP+\left[\frac{\partial M}{\partial T}\right]_{P,x}\ dT\ +\ \sum_{ }^{ }x_{i\ }d\overline{M_i}

[MP]P,x dP+[MT]T,x dT + xi dMi\left[\frac{\partial M}{\partial P}\right]_{P,x}\ dP+\left[\frac{\partial M}{\partial T}\right]_{T,x}\ dT\ +\ \sum_{ }^{ }x_{i\ }d\overline{M_i}

[MP]T,x dP+[MT]P,x dT =0\left[\frac{\partial M}{\partial P}\right]_{T,x}\ dP+\left[\frac{\partial M}{\partial T}\right]_{P,x}\ dT\ =0

[MP]T,x dP+[MT]P,x dT + Mi dxi\left[\frac{\partial M}{\partial P}\right]_{T,x}\ dP+\left[\frac{\partial M}{\partial T}\right]_{P,x}\ dT\ +\ \sum_{ }^{ }\overline{M_i}\ dx_i

2.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

 ΔGexcessRT\frac{\Delta G^{excess}}{RT}  function is located:

in the negative part of the diagram

in the positive part of the diagram

it depends on the shape of the miscibility gap

in both the positive and the negative part

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

what is the condition of stability in terms of

 ΔGexcessRT\frac{\Delta G^{excess}}{RT}  

 d2(ΔGexcessRT)dx12>1x1x2\frac{\text{d}^2\left(\frac{^{ }\Delta G^{excess}}{RT}\right)}{\text{d}x_1^2}>-\frac{1}{x_1x_2}  

 d(ΔGexcessRT)dx1>1x1x2\frac{\text{d}^{ }\left(\frac{^{ }\Delta G^{excess}}{RT}\right)}{\text{d}x_1^{ }}>-\frac{1}{x_1x_2}  

 d2(ΔGexcessRT)dx12<1x1x2\frac{\text{d}^2\left(\frac{^{ }\Delta G^{excess}}{RT}\right)}{\text{d}x_1^2}<\frac{1}{x_1x_2}  

 d2(ΔGexcessRT)dx12=1x1x2\frac{\text{d}^2\left(\frac{^{ }\Delta G^{excess}}{RT}\right)}{\text{d}x_1^2}=-\frac{1}{x_1x_2}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Once we know that our partial molar property is

 Mi =lnγi \overline{M_i}\ =\ln\gamma_{i\ }  , applying the Gibbs-Duhem eq. (constant P and T), what it the final result in terms of stability ? 

 dlnγ1dx1 >1x1\frac{\text{d}\ln\gamma_1}{\text{d}x_{1\ }}>-\frac{1}{x_1}  

 dlnγ1dx1 >1x1\frac{\text{d}\ln\gamma_1}{\text{d}x_{1\ }}>\frac{1}{x_1}  

 dlnγ1dx1 <1x2\frac{\text{d}\ln\gamma_1}{\text{d}x_{1\ }}<-\frac{1}{x_2}  

 dlnγ1dx1 =1x1\frac{\text{d}\ln\gamma_1}{\text{d}x_{1\ }}=-\frac{1}{x_1}  

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

in order to have stability in our system:

the derivative of the chemical potential with respect to x1 (reference) must be positive (also in terms of fugacity)

the derivative of the chemical potential with respect to x1 (reference) must be positive (but not in terms of fugacity)

the derivative of the chemical potential with respect to x1 (reference) must be negative (also in terms of fugacity)

the derivative of the chemical potential with respect to x1 (reference) must be equal to zero (also in terms of fugacity)

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

if we have this situation, what is the way in which the system reach the equilibrium?

the system tends to move the solute from the left side to the right side

the system tends to move the solvent from the right side to the left side

the system tends to move the solvent from the left side to the right side

the system cannot reach the equilibrium due to the presence of the solute

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

if we have this system, what is the condition of stability?

 df1dx1+df2dx2>0\frac{\text{d}f_1}{\text{d}x_1}+\frac{\text{d}f_2}{\text{d}x_2}>0  

 df2dx2>0\frac{\text{d}f_2}{\text{d}x_2}>0  

 df1dx1<0\frac{\text{d}f_1}{\text{d}x_1}<0  

 df2dx1>0\frac{\text{d}f_2}{\text{d}x_1}>0  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?