Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

11th - 12th Grade

11 Qs

quiz-placeholder

Similar activities

Properties of Logarithms

Properties of Logarithms

9th - 12th Grade

10 Qs

Phương trình mũ, phương trình logarit

Phương trình mũ, phương trình logarit

12th Grade

15 Qs

Derivatives of Logs and Exponentials

Derivatives of Logs and Exponentials

11th - 12th Grade

10 Qs

Logaritmos

Logaritmos

12th Grade

15 Qs

Propiedades de los logaritmos

Propiedades de los logaritmos

11th Grade

10 Qs

:x Học :x (Hs Mũ - Hs Lôgarit)

:x Học :x (Hs Mũ - Hs Lôgarit)

12th Grade

10 Qs

bai tap phuong trinh mu

bai tap phuong trinh mu

12th Grade

10 Qs

Logarithms

Logarithms

9th - 12th Grade

12 Qs

Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

Created by

Youtube Mattdoesmath Subscribe

Used 36+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Jaime decides to invest her money in a bank that advertises 5.5% annual interest compounded monthly. She decides her initial investment will be $1000. Check all the true statements that apply.

The function that models the growth of Jaimes money is

f(x)=1000(1+.05512)12xf\left(x\right)=1000\left(1+\frac{.055}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The function that models the growth of Jaimes money is f(x)=1000(1+5.512)12xf\left(x\right)=1000\left(1+\frac{5.5}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The annual yield of of Jaimes account is 5.64%

The annual yield if Jaimes account is 5.5%

f(4)=1315.70 f\left(4\right)=1315.70\ Indicates that Jaimes account will have $1315.70 after 4 years.

2.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Bill opens an online savings account through Goldman Sach's Marcus. He determines a formula that can be used to predict his accounts growth. Check all that apply regarding Bills account.

 m(x)= 5000(1+.03512)12xm\left(x\right)=\ 5000\left(1+\frac{.035}{12}\right)^{12x}  

Bill will have $5,954.71 in his account after 5 years

The inverse of Bills function in  m1(x)=log(1+.03512)(x5000)12m^{-1}\left(x\right)=\frac{\log_{\left(1+\frac{.035}{12}\right)}\left(\frac{x}{5000}\right)}{12}  

The invers of Bills function is approximately  m1(x)=112log(1.0029)(x5000)m^{-1}\left(x\right)=\frac{1}{12}\log_{\left(1.0029\right)}\left(\frac{x}{5000}\right)  

 m1(6385.83)=7m^{-1}\left(6385.83\right)=7  Indicates that bill will have a total of $6,385.83 after 7 years

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Given the function

 g(x)= 2.225(3x)+11g\left(x\right)=\ 2.225\left(3^x\right)+11 . Check all that apply

Given the function h(x)= 71.25h\left(x\right)=\ 71.25  , g(x) = h(x) when x = 3

The Inverse of g(x) is  g1(x)= log3(x+112.225)g^{-1}\left(x\right)=\ \log_3\left(\frac{x+11}{2.225}\right)  

The Inverse of g(x) is  g1(x)=log3(x112.225)g^{-1}\left(x\right)=\log_3\left(\frac{x-11}{2.225}\right)  

The inverse of g(x) is  g1(x)= log(x112.225)3g^{-1}\left(x\right)=\ \log_{\left(\frac{x-11}{2.225}\right)}3  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 logu125=3\log_u125=3  

Convert the following Logarithmic statement to an exponential statement.

 u3=125u^3=125  

 3u=1253^u=125  

 u125=3u^{125}=3  

 3125=u3^{125}=u  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt


Convert the following exponential equation to a logarithm
 4x=184^x=18  


 log418=x\log_418=x  

 log184=x\log_{18}4=x  

 logx18=4\log_x18=4  

 log4x=18\log_4x=18  

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given
 j(x)=2x3+5j\left(x\right)=-2\left|x-3\right|+5  

Check all that apply.

All of the transformations that have taken place are a translation right 3 and up 5. The vertical stretch is 2 and a reflection across the x-axis

 2x1          x32x-1\ \ \ \ \ \ \ \ \ \ x\le3  
 2x +11          x>3-2x\ +11\ \ \ \ \ \ \ \ \ \ x>3  


 2x+2       x32x+2\ \ \ \ \ \ \ x\le3  
 2x+11       x<3-2x+11\ \ \ \ \ \ \ x<3  

All of the transformations that have taken place are a translation Left 3 and up 5. The horizontal compression is 2 and a reflection across the x-axis

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given the function
 g(x)= 3x2+12x7g\left(x\right)=\ -3x^2+12x-7 

Check all that applies 


The inverse for the domain restriction  x2x\ge2  is  g1(x)=13(x5)+2g^{-1}\left(x\right)=\sqrt{-\frac{1}{3}\left(x-5\right)}+2  

The Inverse for the domain restriction  x2x\ge2  is  g1(x)=(x5)3+2g^{-1}\left(x\right)=\sqrt{\frac{\left(x-5\right)}{3}}+2  

Given the function  t(x)= 13x+1t\left(x\right)=\ \frac{1}{3}x+1  ,  g(x)>t(x)g\left(x\right)>t\left(x\right)  on the interval  (.889, 3)\left(.889,\ 3\right)  

Given the function  t\left(x\right)=\ \frac{1}{3}x+1  ,  g\left(x\right)>t\left(x\right)  on the interval  (, .889) U (3, )\left(-\infty,\ .889\right)\ U\ \left(3,\ \infty\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?