Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

11th - 12th Grade

11 Qs

quiz-placeholder

Similar activities

PTS MATEMATIKA 2022/2023

PTS MATEMATIKA 2022/2023

12th Grade

15 Qs

groep 6 insecten quiz

groep 6 insecten quiz

1st - 12th Grade

15 Qs

Find derivative and gradient of a tangent

Find derivative and gradient of a tangent

12th Grade

10 Qs

تركيب دالتين

تركيب دالتين

KG - University

10 Qs

Peluang

Peluang

11th Grade

10 Qs

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

PH 1 Bilangan Berpangkat Kelas 9 2021/2022

1st - 12th Grade

10 Qs

Standard_Angles_sin_cos_tan

Standard_Angles_sin_cos_tan

9th - 12th Grade

13 Qs

Géométrie positionnement

Géométrie positionnement

11th - 12th Grade

11 Qs

Module B Outcome 4&6 Logarithms and Inverses

Module B Outcome 4&6 Logarithms and Inverses

Assessment

Quiz

Mathematics

11th - 12th Grade

Practice Problem

Medium

CCSS
HSF.BF.B.5, HSF-IF.C.8B, HSF-BF.B.4A

+2

Standards-aligned

Created by

Youtube Mattdoesmath Subscribe

Used 37+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

11 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Jaime decides to invest her money in a bank that advertises 5.5% annual interest compounded monthly. She decides her initial investment will be $1000. Check all the true statements that apply.

The function that models the growth of Jaimes money is

f(x)=1000(1+.05512)12xf\left(x\right)=1000\left(1+\frac{.055}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The function that models the growth of Jaimes money is f(x)=1000(1+5.512)12xf\left(x\right)=1000\left(1+\frac{5.5}{12}\right)^{12x} , such that f(x) is the amount of money after a given number of x years.

The annual yield of of Jaimes account is 5.64%

The annual yield if Jaimes account is 5.5%

f(4)=1315.70 f\left(4\right)=1315.70\ Indicates that Jaimes account will have $1315.70 after 4 years.

2.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Bill opens an online savings account through Goldman Sach's Marcus. He determines a formula that can be used to predict his accounts growth. Check all that apply regarding Bills account.

 m(x)= 5000(1+.03512)12xm\left(x\right)=\ 5000\left(1+\frac{.035}{12}\right)^{12x}  

Bill will have $5,954.71 in his account after 5 years

The inverse of Bills function in  m1(x)=log(1+.03512)(x5000)12m^{-1}\left(x\right)=\frac{\log_{\left(1+\frac{.035}{12}\right)}\left(\frac{x}{5000}\right)}{12}  

The invers of Bills function is approximately  m1(x)=112log(1.0029)(x5000)m^{-1}\left(x\right)=\frac{1}{12}\log_{\left(1.0029\right)}\left(\frac{x}{5000}\right)  

 m1(6385.83)=7m^{-1}\left(6385.83\right)=7  Indicates that bill will have a total of $6,385.83 after 7 years

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Given the function

 g(x)= 2.225(3x)+11g\left(x\right)=\ 2.225\left(3^x\right)+11 . Check all that apply

Given the function h(x)= 71.25h\left(x\right)=\ 71.25  , g(x) = h(x) when x = 3

The Inverse of g(x) is  g1(x)= log3(x+112.225)g^{-1}\left(x\right)=\ \log_3\left(\frac{x+11}{2.225}\right)  

The Inverse of g(x) is  g1(x)=log3(x112.225)g^{-1}\left(x\right)=\log_3\left(\frac{x-11}{2.225}\right)  

The inverse of g(x) is  g1(x)= log(x112.225)3g^{-1}\left(x\right)=\ \log_{\left(\frac{x-11}{2.225}\right)}3  

Tags

CCSS.HSF-BF.B.4A

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 logu125=3\log_u125=3  

Convert the following Logarithmic statement to an exponential statement.

 u3=125u^3=125  

 3u=1253^u=125  

 u125=3u^{125}=3  

 3125=u3^{125}=u  

Tags

CCSS.HSF.BF.B.5

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt


Convert the following exponential equation to a logarithm
 4x=184^x=18  


 log418=x\log_418=x  

 log184=x\log_{18}4=x  

 logx18=4\log_x18=4  

 log4x=18\log_4x=18  

Tags

CCSS.HSF.BF.B.5

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given
 j(x)=2x3+5j\left(x\right)=-2\left|x-3\right|+5  

Check all that apply.

All of the transformations that have taken place are a translation right 3 and up 5. The vertical stretch is 2 and a reflection across the x-axis

 2x1          x32x-1\ \ \ \ \ \ \ \ \ \ x\le3  
 2x +11          x>3-2x\ +11\ \ \ \ \ \ \ \ \ \ x>3  


 2x+2       x32x+2\ \ \ \ \ \ \ x\le3  
 2x+11       x<3-2x+11\ \ \ \ \ \ \ x<3  

All of the transformations that have taken place are a translation Left 3 and up 5. The horizontal compression is 2 and a reflection across the x-axis

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt


Given the function
 g(x)= 3x2+12x7g\left(x\right)=\ -3x^2+12x-7 

Check all that applies 


The inverse for the domain restriction  x2x\ge2  is  g1(x)=13(x5)+2g^{-1}\left(x\right)=\sqrt{-\frac{1}{3}\left(x-5\right)}+2  

The Inverse for the domain restriction  x2x\ge2  is  g1(x)=(x5)3+2g^{-1}\left(x\right)=\sqrt{\frac{\left(x-5\right)}{3}}+2  

Given the function  t(x)= 13x+1t\left(x\right)=\ \frac{1}{3}x+1  ,  g(x)>t(x)g\left(x\right)>t\left(x\right)  on the interval  (.889, 3)\left(.889,\ 3\right)  

Given the function  t\left(x\right)=\ \frac{1}{3}x+1  ,  g\left(x\right)>t\left(x\right)  on the interval  (, .889) U (3, )\left(-\infty,\ .889\right)\ U\ \left(3,\ \infty\right)  

Tags

CCSS.HSF-BF.B.4D

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?