HW5: Graphing Logarithmic Functions

HW5: Graphing Logarithmic Functions

9th - 12th Grade

9 Qs

quiz-placeholder

Similar activities

Determinantes

Determinantes

10th - 12th Grade

11 Qs

Penilaian Harian MTK Peminatan Kelas X

Penilaian Harian MTK Peminatan Kelas X

10th Grade

10 Qs

LINES AND ANGLES

LINES AND ANGLES

9th Grade

14 Qs

PH TRIGONOMETRI

PH TRIGONOMETRI

10th Grade

10 Qs

Konsep Nilai Mutlak

Konsep Nilai Mutlak

10th Grade

10 Qs

Quiz # 13 Topic 10 and 11

Quiz # 13 Topic 10 and 11

9th Grade

10 Qs

Pertidaksamaan Mutlak

Pertidaksamaan Mutlak

10th Grade

10 Qs

Friday Review Quiz - PAT questions Roots Powers Rational #s

Friday Review Quiz - PAT questions Roots Powers Rational #s

9th Grade

14 Qs

HW5: Graphing Logarithmic Functions

HW5: Graphing Logarithmic Functions

Assessment

Quiz

Mathematics

9th - 12th Grade

Practice Problem

Medium

CCSS
HSF-IF.C.7E, 8.F.A.1, HSF.BF.B.3

+1

Standards-aligned

Created by

Robert Kendrick

Used 58+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

9 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Which of the following is true about the general form of a logarithmic function,

 f(x)=alogb(xh)+kf\left(x\right)=a\log_b\left(x-h\right)+k  ? Select ALL that apply

The horizontal asymptote is  y=ky=k  

The vertical asymptote is  x=hx=h  

 hh  is the horizontal shift

 kk  is the vertical shift

 aa  reflects the graph over the x-axis if it's negative

Tags

CCSS.HSF-IF.C.7E

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the vertical asymptote for the graph of

 f(x)=log4xf\left(x\right)=\log_4x  ?

 y=0y=0  

 y=4y=4  

 x=0x=0  

 x=4x=4  

Tags

CCSS.HSF-IF.C.7E

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Describe the end behavior of the graph of

 f(x)=log4xf\left(x\right)=\log_4x  

As  xx\rightarrow\infty  ,  yy\rightarrow\infty  

As  xx\rightarrow\infty  ,  yy\rightarrow-\infty  

As  x0+x\rightarrow0^+  ,  yy\rightarrow\infty  

As  x0+x\rightarrow0^+  ,  yy\rightarrow-\infty  

Tags

CCSS.HSF-IF.C.7E

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Describe the transformation on

 g(x)=log2(x3)g\left(x\right)=\log_2\left(x-3\right)  

The graph has been shifted 3 units up

The graph has been shifted 3 units to the right

The graph has been shifted 2 units right

The graph has been shifted 3 units left

Tags

CCSS.HSF-IF.C.7E

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the domain for

 g(x)=log2(x3)g\left(x\right)=\log_2\left(x-3\right)  ?

All real numbers

 (3,)\left(3,\infty\right)  

 (0,)\left(0,\infty\right)  

 (,3)\left(-\infty,3\right)  

Tags

CCSS.8.F.A.1

CCSS.HSF.IF.B.5

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Describe the transformation for

 h(x)=log3(x+1)h\left(x\right)=-\log_3\left(x+1\right) . Select ALL that apply.

 hh  has been reflected over the x-axis

 hh  has shifted 3 units to the left

 hh  has shifted 1 unit to the left

 hh  has reflected over the y-axis

Tags

CCSS.HSF.BF.B.3

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Describe the end behavior for

 h(x)=log3(x+1)h\left(x\right)=-\log_3\left(x+1\right)  . Select ALL that apply.

As  x1x\rightarrow-1^-  ,  yy\rightarrow-\infty  

As  xx\rightarrow\infty  ,  yy\rightarrow\infty  

As  x1+x\rightarrow-1^+  ,  yy\rightarrow\infty  

As  xx\rightarrow\infty  ,  yy\rightarrow-\infty  

Tags

CCSS.HSF-IF.C.7E

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Describe the transformation(s) for 

 k(x)=log10(x6)4k\left(x\right)=\log_{10}\left(x-6\right)-4  .

k has been shifted 6 units right and 4 units down

k has been shifted 6 units right and 4 units up

k has been shifted 6 units left and 4 units down

k has been shifted 6 units left and 4 units up

9.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the equation for the graph?

y=log4(x+1)+2y=\log_4\left(x+1\right)+2

y=log4(x+2)+1y=\log_4\left(x+2\right)+1

y=log4(x1)+2y=\log_4\left(x-1\right)+2

y=log4(x2)+1y=\log_4\left(x-2\right)+1

Tags

CCSS.HSF-IF.C.7E