Triple integral

Triple integral

University

5 Qs

quiz-placeholder

Similar activities

SOAL 2 : MATEMATIKA PPPK 2021

SOAL 2 : MATEMATIKA PPPK 2021

KG - Professional Development

10 Qs

Fractions Decimals

Fractions Decimals

4th Grade - University

10 Qs

Repaso segundo corte

Repaso segundo corte

University

8 Qs

Integrales triples

Integrales triples

University

3 Qs

ayo bermain

ayo bermain

University

10 Qs

Lý Thuyết Python

Lý Thuyết Python

University

10 Qs

Аналітична геометрія (практика)

Аналітична геометрія (практика)

University

10 Qs

Triple integral

Triple integral

Assessment

Quiz

Mathematics

University

Medium

Created by

-- --

Used 42+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

E is the solid bounded by the paraboloid  y=x2+z2y=x^2+z^2 and  the plane  y=4  . Which of the following region is the projection of E on xy-plane ?

Media Image
Media Image
Media Image
Media Image

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

A solid S is bounded by the planes  x+2y+z=2x+2y+z=2  , x=2yx=2y  , x=0x=0  and  z=0z=0  . View the solid S from xy-plane. Which of the following is NOT TRUE?

Upper surface:  z=2x2yz=2-x-2y  
Lower surface:  z=0z=0  

Upper surface:  z=2x2yz=2-x-2y  
Interval for y:  [0,x2]\left[0,\frac{x}{2}\right]  

Interval for x:  [0,1]\left[0,1\right]  
Interval for y:  [x2,1x2]\left[\frac{x}{2},1-\frac{x}{2}\right]  

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What   1 dV\int_{ }^{ }\int_{ }^{ }\int_{ }^{ }\ 1\ dV  stands for?

Area of region R

Volume of the solid

Mass of the solid

Height of the solid

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 020z20(yz)(2xy)dxdydz\int_0^2\int_0^{z^2}\int_0^{\left(y-z\right)}\left(2x-y\right)dxdydz  =


 1415\frac{14}{15}  

 11  

 1315\frac{13}{15}  

 1615\frac{16}{15}  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

The cone shape of a diamond earring has height = 2 cm and is placed at the origin of xyz axes as shown in the figure. If the density  f(x,y,z)=x2+y2f\left(x,y,z\right)=x^2+y^2  , set up the triple integral to find the mass of the cone.

 220101(x2+y2)dzdydx\int_{-2}^2\int_0^1\int_0^1\left(x^2+y^2\right)dzdydx  

 02π02r2r3dzdrdθ\int_0^{2\cdot\pi}\int_0^2\int_r^2r^3dzdrd\theta  

 02π02r22r2 dzdrdθ\int_0^{2\cdot\pi}\int_0^2\int_{r^2}^2r^2\ dzdrd\theta  

 ππ02r4r3 dzdrdθ\int_{-\pi}^{\pi}\int_0^2\int_r^4r^3\ dzdrd\theta