Oxyz - Khoảng cách

Oxyz - Khoảng cách

12th Grade

16 Qs

quiz-placeholder

Similar activities

Ukuran Penyebaran Data

Ukuran Penyebaran Data

12th Grade

15 Qs

Perbaikan Dimensi 3

Perbaikan Dimensi 3

12th Grade

20 Qs

Graphing Trig Review

Graphing Trig Review

10th Grade - University

18 Qs

Me divierto con las Matemáticas LILEGRE 8° y 9° 2020.

Me divierto con las Matemáticas LILEGRE 8° y 9° 2020.

1st Grade - University

20 Qs

Thử thách Toán Tuần 11

Thử thách Toán Tuần 11

5th Grade - University

20 Qs

add maths (c4)

add maths (c4)

1st - 12th Grade

20 Qs

Variaciones Compuestas y Polinomios.

Variaciones Compuestas y Polinomios.

12th Grade

12 Qs

Oxyz - Khoảng cách

Oxyz - Khoảng cách

Assessment

Quiz

Mathematics

12th Grade

Practice Problem

Medium

Created by

Nguyễn Phượng

Used 14+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  , khoảng cách từ điểm  M(x0; y0; z0)M\left(x_0;\ y_0;\ z_0\right)  đến mặt phẳng  (α): Ax+By+Cz+ D=0\left(\alpha\right):\ Ax+By+Cz+\ D=0  là

 d(M,(α))=Ax0+By0+Cz0+DA2+B2+C2d\left(M,\left(\alpha\right)\right)=\frac{\left|Ax_0+By_0+Cz_0+D\right|}{A^2+B^2+C^2}  .

 d\left(M,\left(\alpha\right)\right)=\frac{\left|Ax_0+By_0+Cz_0\right|}{\sqrt{A^2+B^2+C^2}}  .

 d\left(M,\left(\alpha\right)\right)=\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}}  .

 d\left(M,\left(\alpha\right)\right)=\frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}}  .

2.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  , khoảng cách giữa hai mặt phẳng song song  (α): Ax+By+Cz+ D=0\left(\alpha\right):\ Ax+By+Cz+\ D=0 và  (β): Ax+By+Cz+D=0\left(\beta\right):\ Ax+By+Cz+D'=0  là các khẳng định nào sau đây?

 d((α),(β))=DDA2+B2+C22d\left(\left(\alpha\right),\left(\beta\right)\right)=\frac{D-D'}{\sqrt{A^2+B^2+C^{22}}}   với  M(β)M\in\left(\beta\right)  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=d\left(M,\ \left(\beta\right)\right)   với  M\in\left(\alpha\right)  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=\frac{\left|D-D'\right|}{\sqrt{A^2+B^2+C^2}}  .

 d\left(\left(\alpha\right),\left(\beta\right)\right)=d\left(M,\ \left(\beta\right)\right)   với  M\in\left(\alpha\right)  .

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  , khoảng cách giữa đường thẳng  dd và mặt phẳng  (α)\left(\alpha\right)   là các khẳng định nào sau đây?

 d(d,(α))=0d\left(d,\left(\alpha\right)\right)=0  khi  dd  cắt  (α)\left(\alpha\right)  .

 d\left(d,\left(\alpha\right)\right)=d\left(M,\left(\alpha\right)\right),\ \forall M\in d  khi d\parallel\left(\alpha\right) 

 d\left(d,\left(\alpha\right)\right)=d\left(M,d\right),\ \forall M\in\left(\alpha\right)  khi d\parallel\left(\alpha\right) .

 d\left(d,\left(\alpha\right)\right)=0  khi  d  nằm trong \left(\alpha\right)  .

4.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  ,  cho đường thẳng Δ\Delta  đi qua  M0M_0  và có vectơ chỉ phương  u\overrightarrow{u} khoảng cách từ điểm  M  đến đường thẳng  Δ\Delta 

 d(M,Δ)=MM0d\left(M,\Delta\right)=MM_0  .

 d\left(M,\Delta\right)=\frac{\left|\left[\overrightarrow{u},\ \overrightarrow{MM_0}\right]\right|}{\left|\overrightarrow{u}\right|}  .

 d\left(M,\Delta\right)=\frac{\left[\overrightarrow{u},\ \overrightarrow{MM_0}\right]}{\left|\overrightarrow{u}\right|}  .

 d\left(M,\Delta\right)=\frac{\overrightarrow{u}.\ \overrightarrow{MM_0}}{\left|\overrightarrow{u}\right|}  .

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  ,  các công thức tính khoảng cách giữa hai đường thẳng song song  Δ1, Δ2\Delta_1,\ \Delta_2  là

 d(Δ1, Δ2)=M1M2, M1Δ1,  M2Δ2d\left(\Delta_1,\ \Delta_2\right)=M_1M_2,\ \forall M_1\in\Delta_1,\ \ \forall M_2\in\Delta_2  .

 d\left(\Delta_1,\ \Delta_2\right)=d\left(M,\ \Delta_2\right),\ \forall M\in\Delta_1  khi  \Delta_1\parallel\Delta_2  .

 d\left(\Delta_1,\ \Delta_2\right)=d\left(M,\ \Delta_1\right),\ \forall M\in\Delta_2  khi  \Delta_1\parallel\Delta_2  .

 d\left(\Delta_1,\ \Delta_2\right)=0  khi  \Delta_1\equiv\Delta_2  hoặc  \Delta_1  cắt  \Delta_2  .

6.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Trong không gian  OxyzOxyz  ,  công thức tính khoảng cách giữa hai đường thẳng chéo nhau : Δ1\Delta_1 đi qua  M1M_1  có VTCP  u1\overrightarrow{u_1}  ,    Δ2\Delta_2  đi qua  M2M_2   có VTCP  u2\overrightarrow{u_2}  

 d(Δ1, Δ2)=[u1, u2].M1M2[u1, u2]d\left(\Delta_1,\ \Delta_2\right)=\frac{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}}{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]}  .

 d\left(\Delta_1,\ \Delta_2\right)=M_1M_2  .

 d\left(\Delta_1,\ \Delta_2\right)=\frac{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}\right|}{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]\right|}  .

 d\left(\Delta_1,\ \Delta_2\right)=\frac{\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right].\overrightarrow{M_1M_2}}{\left|\left[\overrightarrow{u_1},\ \overrightarrow{u_2}\right]\right|}  .

7.

MULTIPLE CHOICE QUESTION

45 sec • 1 pt

Trong không gian với hệ tọa độ  OxyzOxyz  , khoảng cách từ điểm  M(1; 2; 3)M\left(1;\ -2;\ 3\right)  đến mặt phẳng  (α): 3x+4y+2z+4=0\left(\alpha\right):\ 3x+4y+2z+4=0  là

 d(M,(α))=53d\left(M,\left(\alpha\right)\right)=\frac{5}{3}  .

 d\left(M,\left(\alpha\right)\right)=\frac{5}{29}  .

 d\left(M,\left(\alpha\right)\right)=\frac{5}{\sqrt{29}}  .

 d\left(M,\left(\alpha\right)\right)=\frac{1}{\sqrt{29}}  .

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?