AP Calculus Review

AP Calculus Review

10th - 12th Grade

10 Qs

quiz-placeholder

Similar activities

Inequalities Unit 3-Algebra

Inequalities Unit 3-Algebra

8th - 10th Grade

11 Qs

5-12 PAP Quizizz

5-12 PAP Quizizz

10th Grade

12 Qs

Função Modular

Função Modular

10th Grade

11 Qs

Polinomios Aritméticos

Polinomios Aritméticos

9th - 10th Grade

10 Qs

Remedial UH Fungsi

Remedial UH Fungsi

11th Grade

12 Qs

4A SUMA Y RESTA CON  NOTACION CIENTIFICA

4A SUMA Y RESTA CON NOTACION CIENTIFICA

4th - 11th Grade

12 Qs

QUIZ 2021

QUIZ 2021

11th Grade

10 Qs

Set Notations

Set Notations

12th Grade

15 Qs

AP Calculus Review

AP Calculus Review

Assessment

Quiz

Mathematics

10th - 12th Grade

Medium

CCSS
HSF.IF.B.4, 7.EE.A.1, HSF-IF.C.7D

+8

Standards-aligned

Created by

Krystle Garcia

Used 62+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

The graph of f has a relative extrema when f'

changes sign

equals zero

goes from negative to positive

goes from positive to negative

Tags

CCSS.HSF.IF.B.4

CCSS.HSF.IF.C.7

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Media Image

Let g(x)=0xf(t)dtg\left(x\right)=\int_0^xf\left(t\right)dt , where the graph of f is shown above.  On what interval(s) is g decreasing?



[2,8]

[0,5]

[2,5]

[-5,-2]U[0,5]

Answer explanation

since g'=f, g is decreasing when f is negative.

Tags

CCSS.HSF.IF.B.4

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

If w(x)=f(x)q(x)w\left(x\right)=f\left(x\right)q\left(x\right) , then  w(x)=w'\left(x\right)=   

 f(x)q(x)f'\left(x\right)q'\left(x\right)  

 f(x)q(x)+f(x)q(x)f'\left(x\right)q'\left(x\right)+f\left(x\right)q\left(x\right)  

 f(q(x))q(x)f'\left(q\left(x\right)\right)q'\left(x\right)  

 f(x)q(x)+f(x)q(x)f'\left(x\right)q\left(x\right)+f\left(x\right)q'\left(x\right)  

Answer explanation

product rule!

Tags

CCSS.7.EE.A.1

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

For the function f, it is known that limx1f(x)=limx1+f(x)\lim_{x\rightarrow-1^-}f'\left(x\right)=\lim_{x\rightarrow-1^+}f'\left(x\right)  .  Which of the following must be true?

I.  f is continuous at x = -1


II.  f is differentiable at x = -1

Both I and II

I only

II only

Neither I or II

Answer explanation

Since we know the right and left hand limits are equal, the limit must exist, but since we do not know whether this limit equals f(-1), we cannot conclude with certainty that f is continuous at x=-1.  Since continuity cannot be established, we cannot establish differentiability, which has continuity as a requirement.

Tags

CCSS.HSF-IF.C.7D

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Evaluate limxπ4cosxcos(π4)xπ4\lim_{x\rightarrow\frac{\pi}{4}}\frac{\cos x-\cos\left(\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}  


 22-\frac{\sqrt{2}}{2}  

DNE

 00  

 22\frac{\sqrt{2}}{2}  

Tags

CCSS.HSF.TF.A.3

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

 ddx(112x)\frac{d}{dx}\left(\frac{1}{1-2x}\right)  equals

 2(12x)2-\frac{2}{\left(1-2x\right)^2}  

 2ln12x-2\ln\left|1-2x\right|  

 2(12x)2\frac{2}{\left(1-2x\right)^2}  

 12ln12x-\frac{1}{2}\ln\left|1-2x\right|  

Answer explanation

Taking the derivative will not use ln. Use the power and chain rule:

Tags

CCSS.HSA.SSE.B.3

CCSS.HSF.IF.C.8

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

For a particle moving along the x-axis, the particle's speed equals 2 when

v(t)=2\left|v\left(t\right)\right|=2

v(t)=2v\left(t\right)=2

a(t)=2a\left(t\right)=2

a(t)=2\left|a\left(t\right)\right|=2

Answer explanation

Speed is the absolute value of velocity

Tags

CCSS.HSA.SSE.A.1

CCSS.HSN.VM.A.3

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?