AP Calculus Review #3

AP Calculus Review #3

11th - 12th Grade

10 Qs

quiz-placeholder

Similar activities

TRANSLASI

TRANSLASI

11th Grade

10 Qs

FRACTIONS - LOGICAL

FRACTIONS - LOGICAL

10th - 11th Grade

10 Qs

MGSE.7.G2 (Triangles)

MGSE.7.G2 (Triangles)

KG - University

10 Qs

تحليل الدوال

تحليل الدوال

12th Grade

10 Qs

QUIZ CHAPTER 1

QUIZ CHAPTER 1

11th Grade - University

10 Qs

Polonomial Kelas 11

Polonomial Kelas 11

11th Grade

11 Qs

الاحتمالات 2

الاحتمالات 2

11th Grade

10 Qs

matematika

matematika

9th - 12th Grade

10 Qs

AP Calculus Review #3

AP Calculus Review #3

Assessment

Quiz

Mathematics

11th - 12th Grade

Practice Problem

Medium

CCSS
HSF-IF.C.8B

Standards-aligned

Created by

Krystle Garcia

Used 8+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

If the function f is continuous at x = 3 and limx3f(x)=limx3+f(x)\lim_{x\rightarrow3^-}f'\left(x\right)=\lim_{x\rightarrow3^+}f'\left(x\right)  , then which of the following must be true?


I.   limx3f(x)=3\lim_{x\rightarrow3}f\left(x\right)=3  
II.  f is differentiable at x = 3

II only 

I only

Both I and II

Neither I or II

Answer explanation

The function is continuous as stated and the left and right hand limits of the derivative at x = 3 are equal, so it must also be differentiable at x =3.

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

The region R is the area enclosed by the functions y=2xy=2x  and  y=x2y=x^2  as shown.  Find the volume of the solid when the region R is rotated about the horizontal line y = -1.


 π02((x2+1)2(2x+1)2)dx\pi\int_0^2\left(\left(x^2+1\right)^2-\left(2x+1\right)^2\right)dx  

 π02((2x+1)2(x2+1)2)dx\pi\int_0^2\left(\left(2x+1\right)^2-\left(x^2+1\right)^2\right)dx  

 π02((x21)2(2x1)2)dx\pi\int_0^2\left(\left(x^2-1\right)^2-\left(2x-1\right)^2\right)dx  

 π02((2x1)2(x21)2)dx\pi\int_0^2\left(\left(2x-1\right)^2-\left(x^2-1\right)^2\right)dx  

Answer explanation

Top minus Bottom

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

A trapezoidal sum is an underestimate when the function is ...

increasing

concave down

decreasing

concave up

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddx(ex4)=\frac{d}{dx}\left(e^{\frac{x}{4}}\right)=  

 ex4e^{\frac{x}{4}}  

 14ex4-\frac{1}{4}e^{\frac{x}{4}}  

 14ex4\frac{1}{4}e^{\frac{x}{4}}  

 4ex44e^{\frac{x}{4}}  

Answer explanation

Chain rule!  Take the derivative of the exponent and throw it out front, then keep the e with the original exponent.

Tags

CCSS.HSF-IF.C.8B

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Let  g(x)=0xf(t)dtg\left(x\right)=\int_0^xf\left(t\right)dt  , where the graph of f is shown.  On what interval(s) is g both concave up and increasing?



( -2, 0 ) U ( 8, 10 )

cannot be determined

( -2, 0 )

( -2, 0 ) U ( 5, 10)

Answer explanation

Since g'=f, g is concave up and increasing when f is increasing and positive.

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

For a particle moving along the x-axis,  v(1)=5v\left(1\right)=-5  and  a(1)=2a\left(1\right)=2  .  At time t = 1, it can be said that the particle is...

moving away from the origin

slowing down

moving toward the origin

speeding up

Answer explanation

Since  v(1)>a(1)\left|v\left(1\right)\right|>a\left(1\right)  , the object must be slowing down.  The negative velocity just means the particle is moving in the negative direction.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For a particle moving along the x-axis,  x(1)=5x\left(1\right)=5  and  v(1)=10v\left(1\right)=-10  .  At time t = 1, it can be said that the particle is ...

moving away from the origin

moving toward the origin

slowing down

speeding up

Answer explanation

A particle moves toward the origin when the position and velocity are opposite signs.

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?