AP Calculus Review #3

AP Calculus Review #3

11th - 12th Grade

10 Qs

quiz-placeholder

Similar activities

GRAFIK FUNGSI TRIGONOMETRI

GRAFIK FUNGSI TRIGONOMETRI

10th - 12th Grade

10 Qs

แบบทดสอบ เรื่องอนุพันธ์ของฟังก์ชัน โดยใช้สูตร

แบบทดสอบ เรื่องอนุพันธ์ของฟังก์ชัน โดยใช้สูตร

12th Grade

10 Qs

Latihan Persamaan Fungsi Eksponen

Latihan Persamaan Fungsi Eksponen

10th Grade - University

10 Qs

4.4C Factoring Difference of Squares

4.4C Factoring Difference of Squares

9th - 12th Grade

14 Qs

Derivatives of Logs and Exponentials

Derivatives of Logs and Exponentials

11th - 12th Grade

10 Qs

Factoring Polynomials

Factoring Polynomials

10th - 11th Grade

10 Qs

Toán 8

Toán 8

3rd - 12th Grade

15 Qs

S22 Exponential transformations

S22 Exponential transformations

8th - 12th Grade

10 Qs

AP Calculus Review #3

AP Calculus Review #3

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

Created by

Krystle Garcia

Used 8+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

If the function f is continuous at x = 3 and limx3f(x)=limx3+f(x)\lim_{x\rightarrow3^-}f'\left(x\right)=\lim_{x\rightarrow3^+}f'\left(x\right)  , then which of the following must be true?


I.   limx3f(x)=3\lim_{x\rightarrow3}f\left(x\right)=3  
II.  f is differentiable at x = 3

II only 

I only

Both I and II

Neither I or II

Answer explanation

The function is continuous as stated and the left and right hand limits of the derivative at x = 3 are equal, so it must also be differentiable at x =3.

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

The region R is the area enclosed by the functions y=2xy=2x  and  y=x2y=x^2  as shown.  Find the volume of the solid when the region R is rotated about the horizontal line y = -1.


 π02((x2+1)2(2x+1)2)dx\pi\int_0^2\left(\left(x^2+1\right)^2-\left(2x+1\right)^2\right)dx  

 π02((2x+1)2(x2+1)2)dx\pi\int_0^2\left(\left(2x+1\right)^2-\left(x^2+1\right)^2\right)dx  

 π02((x21)2(2x1)2)dx\pi\int_0^2\left(\left(x^2-1\right)^2-\left(2x-1\right)^2\right)dx  

 π02((2x1)2(x21)2)dx\pi\int_0^2\left(\left(2x-1\right)^2-\left(x^2-1\right)^2\right)dx  

Answer explanation

Top minus Bottom

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

A trapezoidal sum is an underestimate when the function is ...

increasing

concave down

decreasing

concave up

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddx(ex4)=\frac{d}{dx}\left(e^{\frac{x}{4}}\right)=  

 ex4e^{\frac{x}{4}}  

 14ex4-\frac{1}{4}e^{\frac{x}{4}}  

 14ex4\frac{1}{4}e^{\frac{x}{4}}  

 4ex44e^{\frac{x}{4}}  

Answer explanation

Chain rule!  Take the derivative of the exponent and throw it out front, then keep the e with the original exponent.

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Media Image

Let  g(x)=0xf(t)dtg\left(x\right)=\int_0^xf\left(t\right)dt  , where the graph of f is shown.  On what interval(s) is g both concave up and increasing?



( -2, 0 ) U ( 8, 10 )

cannot be determined

( -2, 0 )

( -2, 0 ) U ( 5, 10)

Answer explanation

Since g'=f, g is concave up and increasing when f is increasing and positive.

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

For a particle moving along the x-axis,  v(1)=5v\left(1\right)=-5  and  a(1)=2a\left(1\right)=2  .  At time t = 1, it can be said that the particle is...

moving away from the origin

slowing down

moving toward the origin

speeding up

Answer explanation

Since  v(1)>a(1)\left|v\left(1\right)\right|>a\left(1\right)  , the object must be slowing down.  The negative velocity just means the particle is moving in the negative direction.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

For a particle moving along the x-axis,  x(1)=5x\left(1\right)=5  and  v(1)=10v\left(1\right)=-10  .  At time t = 1, it can be said that the particle is ...

moving away from the origin

moving toward the origin

slowing down

speeding up

Answer explanation

A particle moves toward the origin when the position and velocity are opposite signs.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?