Derivadas Parciais

Derivadas Parciais

University

5 Qs

quiz-placeholder

Similar activities

Por cientos UB Verano 2019

Por cientos UB Verano 2019

5th Grade - University

10 Qs

Ejercicios Matemáticos

Ejercicios Matemáticos

1st Grade - University

10 Qs

II Component (Graph Theory)

II Component (Graph Theory)

University

10 Qs

Repaso_Primer parcialTSM_1

Repaso_Primer parcialTSM_1

6th Grade - University

10 Qs

OLMATH01 Chapter 3 Problem Solving and Reasoning

OLMATH01 Chapter 3 Problem Solving and Reasoning

University

10 Qs

SESIÓN N° 04 ECUACIONES

SESIÓN N° 04 ECUACIONES

University

8 Qs

Diferencialni pocet funkci jedne promenne 2

Diferencialni pocet funkci jedne promenne 2

University

10 Qs

Pre-Quiz Cal1

Pre-Quiz Cal1

University

10 Qs

Derivadas Parciais

Derivadas Parciais

Assessment

Quiz

Mathematics

University

Practice Problem

Hard

Created by

Rosandra Lemos

Used 8+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

 O valor de fx(3,4)f_x\left(3,4\right) para  f(x,y)=x2+y2f\left(x,y\right)=\sqrt{x^2+y^2}  é igual a:

1/5

2/5

3/5

4/5

1

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

O valor de  fy(6, 4)f_y\left(-6,\ 4\right)  para  f(x,y)=sen(2x+3y)f\left(x,y\right)=sen\left(2x+3y\right)  é igual a:

-3

0

1

3

3.

FILL IN THE BLANK QUESTION

5 mins • 1 pt

O valor de  fz(3, 2, 1)f_z\left(3,\ 2,\ 1\right)  para  f(x,y,z)=xy+zf\left(x,y,z\right)=\frac{x}{y+z}  é igual a:
OBS.: Coloque a resposta na forma de fração.

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Considerando f(x,y)=x2+2xy2+2y3xf\left(x,y\right)=x^2+2xy^2+\frac{2y}{3x}  ,  fx(x,y)f_x\left(x,y\right)  é igual a:

 fx(x,y)=2x+2+23yf_x\left(x,y\right)=2x+2+\frac{2}{3}y  

 fx(x,y)=2x+2y22y3x2f_x\left(x,y\right)=2x+2y^2-\frac{2y}{3x^2}  

 fx(x,y)=4xy+23xf_x\left(x,y\right)=4xy+\frac{2}{3x}  

 fx(x,y)=2+2y2f_x\left(x,y\right)=2+2y^2  

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Considerando z=(x2+xy+y)5z=\left(x^2+xy+y\right)^5  , então,  zy\frac{\partial z}{\partial y}  é igual a:

 zy=5(x2+xy+y)4\frac{\partial z}{\partial y}=5\left(x^2+xy+y\right)^4  

 zy=5(x+1)4\frac{\partial z}{\partial y}=5\left(x+1\right)^4  

 zy=5(x2+xy+y)4(x+1)\frac{\partial z}{\partial y}=5\left(x^2+xy+y\right)^4\left(x+1\right)  

 zy=5(x2+xy+y)(x+1)\frac{\partial z}{\partial y}=5\left(x^2+xy+y\right)\left(x+1\right)