INDEFINITE INTEGRAL

INDEFINITE INTEGRAL

12th Grade

26 Qs

quiz-placeholder

Similar activities

Algebra 2 Diagnostic

Algebra 2 Diagnostic

9th - 12th Grade

23 Qs

Chain Rule

Chain Rule

12th Grade

22 Qs

inverse Trigonometric Functions

inverse Trigonometric Functions

12th Grade

21 Qs

Key Features of Tangent and Cotangent Graphs

Key Features of Tangent and Cotangent Graphs

10th - 12th Grade

24 Qs

#4 All Trignometric Graphs

#4 All Trignometric Graphs

9th - 12th Grade

22 Qs

NGUYÊN HÀM

NGUYÊN HÀM

12th Grade

24 Qs

Differentiation - including trigonometric functions

Differentiation - including trigonometric functions

11th - 12th Grade

22 Qs

Review Indefinite and Definite Integration

Review Indefinite and Definite Integration

10th - 12th Grade

22 Qs

INDEFINITE INTEGRAL

INDEFINITE INTEGRAL

Assessment

Quiz

Mathematics

12th Grade

Hard

Created by

Swagata Biswas

Used 4+ times

FREE Resource

26 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x21(x4+3x2+1)Tan1(x2+1x) \int_{ }^{ }\frac{x^2-1}{\left(x^4+3x^2+1\right)Tan^{-1}\left(\frac{x^2+1}{x}\right)}\   dx is equal to

 Tan1(x+1x)+cTan^{-1}\left(x+\frac{1}{x}\right)+c  

 loge(Tan1(x+1x))+c\log_e\left(Tan^{-1}\left(x+\frac{1}{x}\right)\right)+c  

 loge(tan(x2+1x))+c\log_e\left(\tan\left(\frac{x^2+1}{x}\right)\right)+c  

 (x+1x)Tan1(x+1x)+c\left(x+\frac{1}{x}\right)Tan^{-1}\left(x+\frac{1}{x}\right)+c  

2.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

The value of the integral cos3x+cos5xsin2x+sin4xdx is\int_{ }^{ }\frac{\cos^3x+\cos^5x}{\sin^2x+\sin^4x}dx\ is  

 sinx6Tab1(sin x)+c\sin x-6Tab^{-1}\left(\sin\ x\right)+c  

 sinx2(sinx)1+c\sin x-2\left(\sin x\right)^{-1}+c  

 sinx2(sinx)16Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}-6Tan^{-1}\left(\sin x\right)+c  

 sinx2(sinx)1+5Tan1(sinx)+c\sin x-2\left(\sin x\right)^{-1}+5Tan^{-1}\left(\sin x\right)+c  

3.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x+1x(1+xex)2dx=logexex1+xex+f(x)+c,\int_{ }^{ }\frac{x+1}{x\left(1+xe^x\right)^2}dx=\log_e\left|\frac{xe^x}{1+xe^x}\right|+f\left(x\right)+c,  then f(x) is.

 11+xex\frac{1}{1+xe^x}  

 x1+xex\frac{x}{1+xe^x}  

 xex1+x\frac{xe^x}{1+x}  

 xex1+ex\frac{xe^x}{1+e^x}  

4.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 x1(x+1)x(x2+x+1)dx is\int_{ }^{ }\frac{x-1}{\left(x+1\right)\sqrt{x\left(x^2+x+1\right)}}dx\ is  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 2Tan1(x2+x+1x)+c2Tan^{-1}\left(\frac{x^2+x+1}{x}\right)+c  

 Tan1(x2+x+1x)+cTan^{-1}\left(\frac{\sqrt{x^2+x+1}}{x}\right)+c  

 2Tan1x+1x+1+c2Tan^{-1}\sqrt{x+\frac{1}{x}+1}+c  

5.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 (xx3)13x4dx=\int_{ }^{ }\frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4}dx=  

 38(1x21)43+c\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 38(1x2+1)43+c-\frac{3}{8}\left(\frac{1}{x^2}+1\right)^{\frac{4}{3}}+c  

 38(1x21)43+c-\frac{3}{8}\left(\frac{1}{x^2}-1\right)^{\frac{4}{3}}+c  

 34(11x2)43+c-\frac{3}{4}\left(1-\frac{1}{x^2}\right)^{\frac{4}{3}}+c  

6.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If y(xy)2=x, then dxx3yequalsIf\ y\left(x-y\right)^2=x,\ then\ \int_{ }^{ }\frac{dx}{x-3y}equals  

 x2loge{(xy)2+1}+c\frac{x}{2}\log_e\left\{\left(x-y\right)^2+-1\right\}+c  

 12loge{(xy)21}+c\frac{1}{2}\log_e\left\{\left(x-y\right)^2-1\right\}+c  

 x+12loge{(xy)2+1}+cx+\frac{1}{2}\log_e\left\{\left(x-y\right)^2+1\right\}+c  

 loge{(xy)21}+c\log_e\left\{\left(x-y\right)^2-1\right\}+c  

7.

MULTIPLE CHOICE QUESTION

10 mins • 1 pt

 If (1x1+x)12 dxx=2 cos1xϕ(x)+cIf\ \int_{ }^{ }\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^{\frac{1}{2}}\ \frac{dx}{x}=2\ \cos^{-1}\sqrt{x}-\phi\left(x\right)+c  , then  ϕ(x) equals\phi\left(x\right)\ equals  

 loge(11xx)\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 12loge(1+1xx)\frac{1}{2}\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(11xx)2\log_e\left(\frac{1-\sqrt{1-x}}{\sqrt{x}}\right)  

 2loge(1+1xx)2\log_e\left(\frac{1+\sqrt{1-x}}{\sqrt{x}}\right)  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?