平方完成(2次の係数あり)

平方完成(2次の係数あり)

10th Grade

5 Qs

quiz-placeholder

Similar activities

Întrebări despre Suma lui Gauss

Întrebări despre Suma lui Gauss

8th Grade - University

10 Qs

Ingles

Ingles

10th Grade

10 Qs

Medidas Dispersión - Centralización

Medidas Dispersión - Centralización

10th Grade - University

10 Qs

GEOMETRÍA ANALÍTICA

GEOMETRÍA ANALÍTICA

1st - 10th Grade

10 Qs

Finding Sin, Cos, and Tan of All Angles

Finding Sin, Cos, and Tan of All Angles

10th - 12th Grade

10 Qs

Chapter 4 Final Review

Chapter 4 Final Review

6th - 12th Grade

10 Qs

Trigonometry 0606

Trigonometry 0606

10th - 11th Grade

10 Qs

H10. các định nghĩa

H10. các định nghĩa

10th Grade

10 Qs

平方完成(2次の係数あり)

平方完成(2次の係数あり)

Assessment

Quiz

Mathematics

10th Grade

Medium

Created by

yamamoto shohei

Used 47+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

平方完成せよ。

 y=2x24xy=2x^2-4x  

 2(x1)212\left(x-1\right)^2-1  

 2(x2)242\left(x-2\right)^2-4  

 2(x1)222\left(x-1\right)^2-2  

 2(x2)282\left(x-2\right)^2-8  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

平方完成せよ。

 y=3x2+6xy=3x^2+6x  

 y=3(x+2)24y=3\left(x+2\right)^2-4  

 y=3(x+1)21y=3\left(x+1\right)^2-1  

 y=3(x+2)212y=3\left(x+2\right)^2-12  

 y=3(x+1)23y=3\left(x+1\right)^2-3  

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

平方完成せよ。

 y=x2+4xy=-x^2+4x  

 y=(x2)2+4y=-\left(x-2\right)^2+4  

 y=(x2)24y=-\left(x-2\right)^2-4  

 y=(x+2)2+4y=-\left(x+2\right)^2+4  

 y=(x+2)24y=-\left(x+2\right)^2-4  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

平方完成せよ。

 y=2x2+8xy=-2x^2+8x  

 y=2(x4)216y=-2\left(x-4\right)^2-16  

 y=2(x2)24y=-2\left(x-2\right)^2-4  

 y=2(x2)2+8y=-2\left(x-2\right)^2+8  

 y=2(x4)2+32y=-2\left(x-4\right)^2+32  

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

平方完成せよ。

 y=3x26xy=-3x^2-6x  


 y=3(x+1)2+3y=-3\left(x+1\right)^2+3  

 y=3(x1)2+3y=-3\left(x-1\right)^2+3  

 y=3(x+1)23y=-3\left(x+1\right)^2-3  

 y=3(x1)23y=-3\left(x-1\right)^2-3