Многочлены. Теорема Безу.

Многочлены. Теорема Безу.

11th - 12th Grade

7 Qs

quiz-placeholder

Similar activities

Math 3 EOC Review - Polynomials

Math 3 EOC Review - Polynomials

9th - 11th Grade

12 Qs

Basic Calculus LIMITS

Basic Calculus LIMITS

1st Grade - University

10 Qs

SUMA Y RESTA DE POLINOMIOS

SUMA Y RESTA DE POLINOMIOS

1st Grade - University

10 Qs

Exponent Properties (Powers of Monomials)

Exponent Properties (Powers of Monomials)

9th - 12th Grade

10 Qs

Binomial Expansions

Binomial Expansions

10th - 12th Grade

10 Qs

Using Exponent Rules

Using Exponent Rules

9th - 12th Grade

10 Qs

Operasi dan Nilai Suku Banyak

Operasi dan Nilai Suku Banyak

11th Grade

10 Qs

TURUNAN ALJABAR

TURUNAN ALJABAR

12th Grade

10 Qs

Многочлены. Теорема Безу.

Многочлены. Теорема Безу.

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

Created by

Nadezhda Yegorkina

Used 11+ times

FREE Resource

7 questions

Show all answers

1.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Дан многочлен  P(x)=x52x3+4x27x+5P\left(x\right)=x^5-2x^3+4x^2-7x+5 . Найдите  P(1)P\left(-1\right)  .

2.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Укажите степень многочлена  P(x)=(x32x+1)17+(x5x+1)12P\left(x\right)=\left(x^3-2x+1\right)^{17}+\left(x^5-x+1\right)^{12}  

3.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Найдите свободный член многочлена  P(x)=(x32x+1)17+(x5x+1)12P\left(x\right)=\left(x^3-2x+1\right)^{17}+\left(x^5-x+1\right)^{12}  

4.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Найдите сумму коэффициентов многочлена  P(x)=(x32x+1)17+(x5x+1)12P\left(x\right)=\left(x^3-2x+1\right)^{17}+\left(x^5-x+1\right)^{12}  

5.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Найдите остаток от деления многочлена  P(x)=x53x4+2x7P\left(x\right)=x^5-3x^4+2x-7  на двучлен  x1x-1  

6.

FILL IN THE BLANK QUESTION

1 min • 1 pt

Найдите остаток от деления многочлена  P(x)=x216+x36+x66P\left(x\right)=x^{216}+x^{36}+x^6-6  на двучлен  x+1x+1  

7.

FILL IN THE BLANK QUESTION

1 min • 1 pt

При каких значениях  aa  многочлен  P(x)=x2021+ax5P\left(x\right)=x^{2021}+ax-5  делится на двучлен  x+1x+1