Continuity at a Point Quiz

Continuity at a Point Quiz

12th Grade - University

10 Qs

quiz-placeholder

Similar activities

Continuity-1

Continuity-1

12th Grade

15 Qs

Continuity and Differentiability

Continuity and Differentiability

11th - 12th Grade

11 Qs

Continuity

Continuity

University

10 Qs

Continuity

Continuity

12th Grade

15 Qs

Continuity

Continuity

12th Grade - University

12 Qs

Discontinuity

Discontinuity

10th - 12th Grade

10 Qs

Continuity

Continuity

11th - 12th Grade

14 Qs

Differentiability & Continuity

Differentiability & Continuity

11th - 12th Grade

10 Qs

Continuity at a Point Quiz

Continuity at a Point Quiz

Assessment

Quiz

Mathematics

12th Grade - University

Medium

CCSS
HSF-IF.C.7B, HSF-IF.C.7D, HSF.IF.A.2

Standards-aligned

Created by

Alaina Plant

Used 31+ times

FREE Resource

10 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Select the THREE conditions for Continuity at a Point  x=cx=c .

 limxcf(x)=f(c)\lim_{x\rightarrow c}f\left(x\right)=f\left(c\right)  

 f(c)f\left(c\right)  must be positive

 f(c)f\left(c\right)  is defined

 limxcf(x)\lim_{x\rightarrow c}f\left(x\right)  exists

 limxcf(x)f(c)\lim_{x\rightarrow c}f\left(x\right)\ne f\left(c\right)  

Tags

CCSS.HSF-IF.C.7D

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=13x=13 . If the function is not continuous, select the condition for continuity at a point that the function fails.



The function is continuous at  x=13x=13 

The function is not continuous at  x=13x=13 because  f(13)f\left(13\right) is undefined.

The function is not continuous at  x=13x=13 because  limx13f(x)\lim_{x\rightarrow13}f\left(x\right) does not exist.

The function is not continuous at  x=13x=13 because  limx13f(x)f(13)\lim_{x\rightarrow13}f\left(x\right)\ne f\left(13\right) .  

Tags

CCSS.HSF-IF.C.7B

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=5x=5 . If the function is not continuous, select the condition(s) for continuity at a point that the function fails. 


SELECT ALL THAT APPLY, THERE ARE TWO ANSWERS.

The function is continuous at  x=5x=5 

The function is not continuous at  x=5x=5 because  f(5)f\left(5\right) is undefined.

The function is not continuous at  x=5x=5 because  limx5f(x)\lim_{x\rightarrow5}f\left(x\right) does not exist.

The function is not continuous at  x=5x=5 because  limx5f(x)f(5)\lim_{x\rightarrow5}f\left(x\right)\ne f\left(5\right) .  

Tags

CCSS.HSF.IF.A.2

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=18x=18 . If the function is not continuous, state the type of discontinuity the function has at that point.

The function is continuous at  x=18x=18 .

The function has a jump discontinuity at  x=18x=18 .

The function has a removable discontinuity (hole) at  x=18x=18 .

The function has a non-removable (infinite) discontinuity at  x=18x=18 

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=1x=1 . If the function is not continuous, state the type of discontinuity the function has at that point.

The function is continuous at  x=1x=1 .

The function has a jump discontinuity at  x=1x=1 .

The function has a removable discontinuity (hole) at  x=1x=1 .

The function has a non-removable (infinite) discontinuity at  x=1x=1 

Tags

CCSS.HSF-IF.C.7B

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=7x=-7 . If the function is not continuous, state the type of discontinuity the function has at that point.

The function is continuous at  x=7x=-7 .

The function has a jump discontinuity at  x=7x=-7 .

The function has a removable discontinuity (hole) at  x=7x=-7 .

The function has a non-removable (infinite) discontinuity at  x=7x=-7 

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Use the graph shown to determine if the function is continuous at  x=5x=5 . If the function is not continuous, state the type of discontinuity the function has at that point.

The function is continuous at  x=5x=5 .

The function has a jump discontinuity at  x=5x=5 .

The function has a removable discontinuity (hole) at  x=5x=5 .

The function has a non-removable (infinite) discontinuity at  x=5x=5 

Tags

CCSS.HSF-IF.C.7B

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?

Discover more resources for Mathematics