Data Cleansing

Data Cleansing

Professional Development

11 Qs

quiz-placeholder

Similar activities

AI Fundamentals

AI Fundamentals

Professional Development

10 Qs

Server and APIs

Server and APIs

Professional Development

10 Qs

Day 8

Day 8

Professional Development

10 Qs

Post test data science day 24

Post test data science day 24

Professional Development

10 Qs

Day 7

Day 7

Professional Development

10 Qs

Emotional Intelligence and Use of Coursebook Materials

Emotional Intelligence and Use of Coursebook Materials

Professional Development

14 Qs

Power BI Quiz

Power BI Quiz

Professional Development

10 Qs

Lean Six Sigma Green Belt

Lean Six Sigma Green Belt

Professional Development

14 Qs

Data Cleansing

Data Cleansing

Assessment

Quiz

Professional Development

Professional Development

Hard

Created by

Arjun Aji

Used 3+ times

FREE Resource

11 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

10 sec • 5 pts

Tools di dalam python untuk data cleansing adalah ...

RegEx

Excel

Google colab

virtualenv

2.

MULTIPLE CHOICE QUESTION

10 sec • 5 pts

Alasan yang salah dalam melakukan data cleansing adalah ...

Accuracy

Kepercayaan terhadap data

deliverability

relevansi data

3.

MULTIPLE CHOICE QUESTION

20 sec • 5 pts

untuk mencari semua huruf kapital dengan lebih dari 3 huruf dari variabel text, fungsi regex yang tepat adalah ...

re.findall('[A-Z]{3}', text)

re.findall('(A-Z){3}', text)

re.findall('[A-Z]{4,}', text)

re.findall('(A-Z){4,}', text)

4.

MULTIPLE CHOICE QUESTION

10 sec • 5 pts

how to drop missing value in variable df, using pandas ?

df.dropnull()

df.dropna()

df.drop(missing_value=True)

df.read_csv

5.

MULTIPLE CHOICE QUESTION

20 sec • 5 pts

re.sub('\s+', '\n', text) adalah fungsi regex untuk ...

memisahkan teks dengan '\s+'

memisahkan berdasarkan jarak di antara kita

menemukan semua teks di antara '\s+' dan '\n'

mengganti spasi dengan enter

6.

MULTIPLE CHOICE QUESTION

10 sec • 5 pts

bagaimana cara cek 5 data terakhir dari dataframe ?

df.tail()

re.findall(last=True)

df.describe

def tail():

7.

MULTIPLE CHOICE QUESTION

10 sec • 5 pts

syntax JSON mirip dengan penulisan ...

list

set

dictionary

tuple

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?