Pandas Package

Pandas Package

University

13 Qs

quiz-placeholder

Similar activities

Graficas Parte 2

Graficas Parte 2

University

10 Qs

A3 IIIB - Básicas de EDA

A3 IIIB - Básicas de EDA

11th Grade - University

10 Qs

NumpyPandas

NumpyPandas

University

10 Qs

A1 IIIB - Introducción a Data Science

A1 IIIB - Introducción a Data Science

11th Grade - University

10 Qs

Python Workshop Day - 2

Python Workshop Day - 2

University

15 Qs

Analyse de données avec R (introduction au cours)

Analyse de données avec R (introduction au cours)

University

10 Qs

Tools Data Science

Tools Data Science

University

10 Qs

Pandas and Matplot Quiz

Pandas and Matplot Quiz

University

12 Qs

Pandas Package

Pandas Package

Assessment

Quiz

Computers

University

Hard

Created by

OL SAY

FREE Resource

13 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Select all possible way to import "pandas" package

import pandas

import pandas as pd

from pandas import *

load pandas

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

We import a comma-separated-value file "flights.csv" using "pandas" package by

import pandas as pd

df = pd.read_csv("flights.csv")

import pandas as pd

df = pd.load_csv("flights.csv")

import pandas as pd

df = pd.import_csv("flights.csv")

import pandas as pd

df = pd.open_csv("flights.csv")

3.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

import pandas as pd

df = pd.read_csv("flights.csv")

We view the first 5 row by

df.head()

df.head(5)

df.head(n=5)

df.tail(n=5)

4.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

import pandas as pd

df = pd.read_csv("flights.csv")

We view the last 10 rows by

df.tail(n=10)

df.tail(10)

df.head()

df.tail()

5.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

import pandas as pd

df = pd.read_csv("flights.csv")

We view a quick descriptive statistics of numerical features by

df.describe()

df.describe(include="number")

df.summary()

df.summary(exclude="category")

6.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

We select column "year" by

df[ "year" ]

df.loc[ : , "year" ]

df.iloc[ : , 0 ]

df.iloc[ : , 1 ]

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Media Image

We select the fifth row (with index "4") by

df.loc[4]

df.iloc[4, : ]

df[4, : ]

df[4]

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?