Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

9th Grade

10 Qs

quiz-placeholder

Similar activities

Quiz Persamaan Kuadrat

Quiz Persamaan Kuadrat

9th Grade

10 Qs

Persamaan kuadrat

Persamaan kuadrat

9th Grade

10 Qs

Persamaan Kuadrat kelas 9

Persamaan Kuadrat kelas 9

9th Grade

10 Qs

Persamaan dan fungsi kuadrat kelas 9

Persamaan dan fungsi kuadrat kelas 9

1st Grade - University

13 Qs

LATIHAN SOAL-SOAL PERSAMAAN KUADRAT KELAS 9

LATIHAN SOAL-SOAL PERSAMAAN KUADRAT KELAS 9

9th Grade

10 Qs

Soal Ulangan Persamaan Kuadrat

Soal Ulangan Persamaan Kuadrat

9th Grade

10 Qs

Matematika kelas 9 smt 1

Matematika kelas 9 smt 1

9th Grade

15 Qs

Kuis Persamaan Kuadrat

Kuis Persamaan Kuadrat

9th Grade

10 Qs

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Matematika Kelas 9 - Persamaan Kuadrat Bag. 3

Assessment

Quiz

Mathematics

9th Grade

Hard

Created by

nur baeti

FREE Resource

10 questions

Show all answers

1.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Apa yang disebut dengan kuadrat sempurna?

Persamaan yang berbentuk x2+2px+p2

Persamaan yang berbentuk x2-2px+p2

Persamaan yang berbentuk x 2+2px-p2

Persamaan yang berbentuk x2-2px-p2

Answer explanation

A kuadrat sempurna adalah persamaan yang berbentuk x kuadrat ditambah 2px ditambah P kuadrat. Ini adalah jawaban yang benar.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bagaimana cara menentukan akar persamaan kuadrat dengan kuadrat sempurna?

Menghilangkan kuadrat dari persamaan

Mengganti variabel x dengan akar persamaan

Menggunakan rumus kuadrat sempurna

Mengalikan kedua sisi persamaan dengan kuadrat sempurna

Answer explanation

To determine the square root of a perfect square equation, you can use the formula for perfect square trinomials. This formula states that if you have an equation in the form of (ax + b)^2 = c, then you can find the square root by taking the square root of c and subtracting b divided by 2a. In this case, the correct choice is 'Using the formula for perfect square trinomials'. This method allows you to find the square root of a perfect square equation without factoring or completing the square.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2 = 9?

√9

√3

√6

√12

Answer explanation

The question asks for the value of x that satisfies the equation x^2 = 9. The correct choice is 'Akar 9' which means 'Square root of 9'. The square root of 9 is 3, so the answer is 3. This is because 3^2 = 9. Therefore, the correct answer is 'Akar 9'.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2=12?

√2

√3

√4

√6

Answer explanation

To find the value of x in the equation x^2 = 12, we need to find the square root of 12. The square root of 12 is approximately 3.46. However, none of the options mention this value. Therefore, none of the options provide the correct answer explanation.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2- 1 = 9?

√2

√3

√4

√6

Answer explanation

The given question asks for the value of x in the equation x^2 - 1 = 9. To find the value of x, we need to solve the equation. First, we add 1 to both sides of the equation to get x^2 = 10. Then, we take the square root of both sides to find that x = √10. So, the answer is not Akar 2, Akar 4, or Akar 6. The correct answer is Akar 3.

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar dari persamaan x2- 2x + 15 = 0?

√2

√3

√4

√5

Answer explanation

To find the roots of the given quadratic equation, we can use the quadratic formula. The discriminant of the equation is 2, which is positive. This means that the equation has two real and distinct roots. The correct root is Akar 5, as it satisfies the equation. Therefore, the value of the root of the equation x^2 - 2x + 15 = 0 is Akar 5.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Bagaimana bentuk kuadrat sempurna dari persamaan x2 + 6x + 9 = 0?

x + 3

x - 3

x + 2

x - 2

Answer explanation

Kuadrat sempurna dalam persamaan x^2 + 6x + 9 = 0 adalah (x + 3)^2. Ini dapat diketahui dengan melihat koefisien x yang berbeda dengan koefisien konstanta dan memiliki dua akar yang sama. Dalam kasus ini, opsi yang benar adalah x + 3 karena menghasilkan persamaan kuadrat yang sama dengan persamaan awal.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?