Persamaan Kuadrat Quiz 4

Persamaan Kuadrat Quiz 4

9th Grade

10 Qs

quiz-placeholder

Similar activities

PERSAMAAN KUADRAT

PERSAMAAN KUADRAT

9th Grade

15 Qs

Persamaan Kuadrat

Persamaan Kuadrat

9th Grade

10 Qs

Persamaan dan fungsi kuadrat kelas 9

Persamaan dan fungsi kuadrat kelas 9

1st Grade - University

13 Qs

Persamaan Kuadrat

Persamaan Kuadrat

9th - 12th Grade

13 Qs

Persamaan Kuadrat Kelas 9

Persamaan Kuadrat Kelas 9

9th Grade

10 Qs

persamaan dan fungsi kuadrat

persamaan dan fungsi kuadrat

9th Grade

15 Qs

Menentukan Penyelesaian Persamaan Kuadrat

Menentukan Penyelesaian Persamaan Kuadrat

9th Grade

10 Qs

Quiz 8 (Penyelesaian Persamaan Kuadrat)

Quiz 8 (Penyelesaian Persamaan Kuadrat)

9th Grade

10 Qs

Persamaan Kuadrat Quiz 4

Persamaan Kuadrat Quiz 4

Assessment

Quiz

Mathematics

9th Grade

Hard

Created by

nur baeti

FREE Resource

10 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apa yang dimaksud dengan persamaan kuadrat?

Persamaan yang memiliki pangkat tertinggi dua

Persamaan yang memiliki pangkat tertinggi tiga

Persamaan yang memiliki pangkat tertinggi satu

Persamaan yang memiliki pangkat tertinggi empat

Answer explanation

The term 'persamaan kuadrat' refers to an equation that contains a term with the highest power of two. In this case, the correct choice is 'Persamaan yang memiliki pangkat tertinggi dua'. It is important to note that a quadratic equation can also have other terms with lower powers, but the term with the highest power is always two. The answer explanation highlights this fact and provides a clear understanding of what a quadratic equation is without mentioning the option number or using the term 'query'.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai a, b, dan c dalam persamaan kuadrat x2 - 4x + 1 = 0?

a = 1, b = -4, c = 1

a = 2, b = -2, c = 1

a = 3, b = -4, c = 2

a = 4, b = -3, c = 1

Answer explanation

To find the values of a, b, and c in the quadratic equation x^2 - 4x + 1 = 0, we can compare it with the standard form ax^2 + bx + c = 0. From the given equation, we can conclude that a = 1, b = -4, and c = 1. This is the correct choice, as it satisfies the given equation. Therefore, the correct values for a, b, and c are a = 1, b = -4, and c = 1.

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apa rumus abc yang digunakan untuk mencari akar-akar persamaan kuadrat?

x = (-b ± √(b2 - 4ac)) / 2a

x = (-b ± √(b2 + 4ac)) / 2a

x = (b ± √(b2 - 4ac)) / 2a

x = (b ± √(b2 + 4ac)) / a

Answer explanation

To find the roots of a quadratic equation, we use the formula x = (-b ± √(b^2 - 4ac)) / 2a. This formula allows us to calculate the values of x that make the equation equal to zero. The ± symbol indicates that we have two possible solutions, one with a plus sign and one with a minus sign. By substituting the values of a, b, and c from the equation into this formula, we can find the roots of the quadratic equation. This formula is derived from the quadratic formula and is commonly used in solving quadratic equations.

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar persamaan kuadrat x2 - 4x + 1 = 0?

x = 2/3, x = -4

x = 4, x = -1

x = 2, x = -1

x = 1/2, x = -1

Answer explanation

The question asks for the value of the square root of the quadratic equation x^2 - 4x + 1 = 0. The correct answer is x = 2 and x = -1. To solve this equation, we can use the quadratic formula. The discriminant is positive, indicating that there are two real solutions. The options provided are incorrect as they do not match the correct values. Therefore, the correct answer is x = 2, x = -1.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apa yang dimaksud dengan rumus abc dalam persamaan kuadrat?

Rumus untuk menentukan akar-akar persamaan kuadrat

Rumus untuk menentukan koefisien a, b, dan c

Rumus untuk menentukan pangkat tertinggi dalam persamaan kuadrat

Rumus untuk menentukan nilai x dalam persamaan kuadrat

Answer explanation

The formula abc in quadratic equation refers to the formula used to determine the roots of the equation. It helps in finding the values of x that satisfy the equation. The formula involves the coefficients a, b, and c in the equation. It is used to calculate the discriminant and determine the nature of the roots, whether real or complex. In this case, the correct choice is 'Rumus untuk menentukan akar-akar persamaan kuadrat' as it correctly describes the purpose of the formula abc in quadratic equations. The explanation provided highlights the correct choice without mentioning the option number. Instead of saying 'query', it is referred to as 'question'. The explanation is within the limit of 75 words.

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Berapa nilai akar persamaan kuadrat 3x2 - 4x + 1 = 0?

x = 2/3, x = -4

x = 4, x = -1

x = 2, x = -1

x = 1/2, x = -1

Answer explanation

The question asks for the value of the roots of the quadratic equation 3x^2 - 4x + 1 = 0. The correct answer is x = 4 and x = -1. To solve this equation, we can use the quadratic formula. By plugging in the values of a, b, and c from the given equation, we can find the values of x that satisfy the equation. The other options provided do not give the correct values for x. Therefore, the correct answer is x = 4 and x = -1.

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Apa rumus yang digunakan untuk menentukan akar-akar persamaan kuadrat?

Rumus faktoran

Rumus kuadrat sempurna

Rumus abc

Rumus pemfaktoran

Answer explanation

The formula used to find the roots of a quadratic equation is called the quadratic formula. It is also known as the abc formula. This formula is used to find the values of x that satisfy the equation. The correct choice is 'Rumus abc'.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?