Module 2 Quiz Preparation

Module 2 Quiz Preparation

Professional Development

•

20 Qs

quiz-placeholder

Similar activities

Data Analytics vs. Data Science vs. Data Engineering

Data Analytics vs. Data Science vs. Data Engineering

Professional Development

•

15 Qs

Excel Data Analysis

Excel Data Analysis

Professional Development

•

15 Qs

2. Ayo Main Quiz Lagi

2. Ayo Main Quiz Lagi

University - Professional Development

•

20 Qs

Manajerial

Manajerial

Professional Development

•

20 Qs

1. Ayo Main Quiz

1. Ayo Main Quiz

University - Professional Development

•

16 Qs

Pre Test Fundamental Kotlin

Pre Test Fundamental Kotlin

Professional Development

•

20 Qs

Membangun Program Security Awareness

Membangun Program Security Awareness

University - Professional Development

•

20 Qs

TES FORMATIF DAMPAK SOSIAL INFORMATIKA

TES FORMATIF DAMPAK SOSIAL INFORMATIKA

Professional Development

•

20 Qs

Module 2 Quiz Preparation

Module 2 Quiz Preparation

Assessment

Quiz

•

Computers

•

Professional Development

•

Practice Problem

•

Hard

Created by

Median Hardiv

Used 23+ times

FREE Resource

AI

Enhance your content in a minute

Add similar questions
Adjust reading levels
Convert to real-world scenario
Translate activity
More...

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Misalkan kita membuat array/list dengan nama variabel x dan berisi sesuai dengan gambar. Agar dapat mengambil array berikut:

array([[11, 14, 16],

[21, 24, 26],

[31, 34, 36]])

maka code yang tepat adalah

x[-4:-1, np.array([1, 4, 6])]

x[1:4, np.array([1, 4, 6])]

x[-4:-1, np.array([-9, -6, -4])]

x[1:4, np.array([-9, -6, -4])]

Semua jawaban benar

2.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Jika kita ingin generate array 2-D mengandung 3 baris dan 5 kolom random integer dari 0 sampai 100, maka code yang tepat digunakan adalah

random.rand(3,5)

random.randint(100, size=(3, 5))

Tidak ada yang benar

random.randint(100, size=(5, 3))

random.randn(3,5)

3.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Jika kita memiliki df1 (atas) dan df2 (bawah) seperti pada gambar dan ingin menampilkan data seperti data di bawah ini:

A B C D F

A0 B0 C0 D0 NaN

A1 B1 C1 D1 NaN

A2 B2 C2 D2 NaN

A3 B3 C3 D3 NaN

NaN B0 NaN D0 F0

NaN B1 NaN D1 F1

NaN B3 NaN D3 F3

NaN B4 NaN D4 F4

maka code yang tepat digunakan adalah

join = pd.concat([df1, df2], axis=0, join='outer')

join = pd.concat([df1, df2], axis=1, join='inner')

join = pd.concat([df1, df2], axis=0, join='inner')

Tidak ada yang benar.

join = pd.concat([df1, df2], axis=1, join='outer')

4.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Jika kita ingin mengetahui jumlah data `clarity` yang unik pada data `diamonds`, code yang tepat digunakan adalah

df['clarity'].nunique()

Semua pilihan benar.

len(pd.unique(df['clarity']))

len(df['clarity'].unique())

len(df['clarity'].value_counts())

5.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Manakah cara yang tepat untuk mencari median harga berlian dengan jumlah carat lebih dari 0.1?

df[df['carat']>=0.1]['price'].median()

df[df['carat']==0.1]['price'].sum()/len(df[df['carat']==0.1])

df[df['carat']>0.1]['price'].median()

df.loc[df['carat']>0.1, 'price'].mean()

Semua jawaban benar

6.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Interpretasi manakah yang tepat untuk menggambarkan output dari kode berikut berdasarkan gambar tersebut:

df.groupby('cut').mean().sort_values('depth', ascending=True)['depth'].iloc[:3]

3 `cut` dengan rata-rata `depth` terendah

3 `cut` dan `depth` dengan rata-rata `depth` tertinggi

3 `cut` dan `depth` dengan rata-rata `depth` terendah

3 `cut` dengan rata-rata `depth` tertinggi

Rata-rata `depth` berdasarkan `cut`nya

7.

MULTIPLE CHOICE QUESTION

3 mins • 1 pt

Media Image

Berdasarkan gambar berikut, mana cara yang paling tepat untuk melakukan uji korelasi antara `depth` dan `table`?

df[['depth','table']].corr()

df.corr()[['depth','table']]

df['depth'].corr(df['table'])

df['depth'].corr(df['table'], method = 'pearson')

df['depth'].corr(df['table'], method = 'spearman')

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?