Résolvez l'équation logarithmique suivante : log(x) = 3
La fonction Logarithme et la fonction exponentiel

Quiz
•
Mathematics
•
1st Grade
•
Hard
amady faye
Used 1+ times
FREE Resource
10 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
2
10
1000
5
Answer explanation
To solve the equation log(x) = 3, we use the property that log base 10 of 1000 equals 3. Therefore, the correct answer is 1000.
2.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Utilisez les propriétés des logarithmes pour simplifier log(2x) + log(3)
log(6x)
log(5x)
log(2x + 3)
log(2) + log(3)
Answer explanation
By using the property log(a) + log(b) = log(ab), the expression log(2x) + log(3) simplifies to log(6x), which is the correct choice.
3.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Calculez la valeur de l'expression exponentielle : e^5
e^5 = 148.4131591
e^5 = 200
e^5 = 100
e^5 = 25
Answer explanation
The correct value of the exponential expression e^5 is 148.4131591.
4.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Appliquez la règle de dérivation pour trouver la dérivée de f(x) = e^x
f'(x) = e^x
f'(x) = x^e
f'(x) = e^(x-1)
f'(x) = 2e^x
Answer explanation
The correct answer is f'(x) = e^x because the derivative of e^x is e^x according to the rule of differentiation for exponential functions.
5.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Quelle est la croissance exponentielle de la fonction f(x) = 2^x ?
Une croissance exponentielle
Une croissance linéaire
Une croissance logarithmique
Une croissance quadratique
Answer explanation
The function f(x) = 2^x exhibits exponential growth, as the variable x is in the exponent, leading to an exponential increase in the function's value.
6.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Résolvez l'équation logarithmique suivante : log(2x) = log(4) + log(3)
x = 2
x = 10
x = 12
x = 6
Answer explanation
By using the property log(a) + log(b) = log(ab), the equation simplifies to log(2x) = log(12). Therefore, x = 6.
7.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Utilisez les propriétés des logarithmes pour simplifier log(x^3) - log(x)
3
3x
x^2
x^3 - x
Answer explanation
By using the properties of logarithms, we can simplify log(x^3) - log(x) to 3log(x) - log(x) = 2log(x) = log(x^2). Therefore, the correct answer is x^2.
Create a free account and access millions of resources
Similar Resources on Quizizz
10 questions
TCOM-fonctions exponentielle et logarithme décimal

Quiz
•
1st Grade
10 questions
L'exponentiation

Quiz
•
1st Grade
15 questions
Logaritma

Quiz
•
1st Grade
15 questions
Logaritma X

Quiz
•
1st Grade
14 questions
LOGARITMO

Quiz
•
1st Grade
15 questions
mtkp 10 logaritma dasar

Quiz
•
1st Grade
10 questions
Bab. 2 Fungsi Logaritma (UK12)

Quiz
•
1st Grade
10 questions
Sifat-sifat logaritma

Quiz
•
1st Grade
Popular Resources on Quizizz
15 questions
Character Analysis

Quiz
•
4th Grade
17 questions
Chapter 12 - Doing the Right Thing

Quiz
•
9th - 12th Grade
10 questions
American Flag

Quiz
•
1st - 2nd Grade
20 questions
Reading Comprehension

Quiz
•
5th Grade
30 questions
Linear Inequalities

Quiz
•
9th - 12th Grade
20 questions
Types of Credit

Quiz
•
9th - 12th Grade
18 questions
Full S.T.E.A.M. Ahead Summer Academy Pre-Test 24-25

Quiz
•
5th Grade
14 questions
Misplaced and Dangling Modifiers

Quiz
•
6th - 8th Grade