Pifagor teoremasi va uning ilmiyoti

Pifagor teoremasi va uning ilmiyoti

9th Grade

5 Qs

quiz-placeholder

Similar activities

Aylanada kesmalar

Aylanada kesmalar

9th - 12th Grade

7 Qs

Matnli masalalar 3

Matnli masalalar 3

9th Grade

10 Qs

Matnli masalalar

Matnli masalalar

9th Grade

10 Qs

Nazorat testi 1

Nazorat testi 1

9th - 12th Grade

8 Qs

10-sinf

10-sinf

9th Grade

2 Qs

9-klass ushin II shereklik testi

9-klass ushin II shereklik testi

9th Grade

2 Qs

Ajoyib test

Ajoyib test

9th Grade

10 Qs

9-klaslar ushin 2-sherek  test toplami

9-klaslar ushin 2-sherek test toplami

9th Grade

3 Qs

Pifagor teoremasi va uning ilmiyoti

Pifagor teoremasi va uning ilmiyoti

Assessment

Quiz

Mathematics

9th Grade

Hard

Created by

Munira Urinbaeva

Used 1+ times

FREE Resource

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Pifagor teoremasi qanday ifodalangan?

Gipotenuzaning kvadrati katetlarining kvadratlarining yig'indisiga teng.

Katetlarining kvadratlarining yig'indisi gipotenuzaning kvadratiga teng.

Katetlarining yig'indisi gipotenuzaning yig'indisiga teng.

Katetlarining kvadratlarining farqi gipotenuzaning kvadratiga teng.

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Gipotenuzani topish formulasi qanday?

c = a^2 + b^2

c = a + b

c = sqrt(a^2 + b^2)

c = a * b

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Katetlarni topish formulasi qanday?

a^2 + b^2 = c^2

a^2 * b^2 = c^2

a^2 - b^2 = c^2

a + b = c

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Pifagor teoremasi qanday amal qiladi?

Katetlar yig'indisi hipotenuzaning kvadratiga teng.

Katetlar kvadratlarining yig'indisi hipotenuzaning kvadratiga teng.

Katetlar kvadratlarining yig'indisi katetning kvadratiga teng.

Hipotenuza teng bo'lgan tomonlar yig'indisi katetning kvadratiga teng.

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Pifagor teoremasi asosida masala yechish

Pifagor teoremasi uchun to'rtburchakning tomonlarini qo'shish kerak

Pifagor teoremasi uchun to'rtburchakning tomonlarini kvadratga oshirish kerak emas

Savolning yechimi uchun to'g'ri to'rtburchakning tomonlarini (a, b, c) aniqlashingiz kerak, c hypotenuse bo'lishi kerak. Keyin, formula c^2 = a^2 + b^2 ni qo'llab, qolgan tomonni toping yoki masalani yeching.

To'rtburchakning tomonlarini aniqlashdan oldin, ularni kvadratga oshiring