Equação do Segundo Grau

Equação do Segundo Grau

10th Grade

12 Qs

quiz-placeholder

Similar activities

Função quadrática parte 1

Função quadrática parte 1

10th Grade

17 Qs

Função do 2º grau

Função do 2º grau

10th Grade

10 Qs

Desvendando Equações Quadráticas

Desvendando Equações Quadráticas

9th Grade - University

15 Qs

COMPARATIVO DE FUNÇÃO AFIM E QUADRÁTICA

COMPARATIVO DE FUNÇÃO AFIM E QUADRÁTICA

10th Grade

11 Qs

aula 07 - Utilização do logaritmo

aula 07 - Utilização do logaritmo

10th Grade

10 Qs

Equações

Equações

7th - 10th Grade

16 Qs

Equações exponenciais

Equações exponenciais

10th Grade

10 Qs

MP_Conceitos Equação do 2º grau

MP_Conceitos Equação do 2º grau

9th - 12th Grade

10 Qs

Equação do Segundo Grau

Equação do Segundo Grau

Assessment

Quiz

Mathematics

10th Grade

Hard

Created by

GIOVANE CONRADO

Used 1+ times

FREE Resource

12 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é a fórmula quadrática para encontrar as raízes de uma equação do segundo grau?

x = (b ± √(b^2 - 4ac)) / 2a

x = (-b ± √(b^2 - 4ac)) / 2a

x = (-b ± √(b^2 - ac)) / 2a

x = (-b ± √(b^2 + 4ac)) / 2a

2.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Como você identifica o discriminante em uma equação do segundo grau e o que ele representa?

O discriminante é sempre positivo em todas as equações do segundo grau

O discriminante representa o valor da variável 'x' na equação

O discriminante é calculado pela fórmula Δ = b² + 4ac

O discriminante em uma equação do segundo grau é calculado pela fórmula Δ = b² - 4ac e representa a natureza das raízes da equação.

3.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Como encontrar o vértice de uma parábola a partir da forma padrão de uma equação quadrática?

O vértice da parábola está sempre no eixo x

O vértice da parábola pode ser encontrado multiplicando a e b na equação original

O vértice da parábola é sempre (0,0)

O vértice da parábola pode ser encontrado substituindo x = -b / (2a) na equação original para obter a coordenada y.

4.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Desenhe o gráfico da função quadrática y = x^2 - 4x + 4. Identifique o vértice, eixo de simetria e raízes.

O vértice é (2, 0), o eixo de simetria é y = 2 e as raízes são x = -2 (com multiplicidade 2)

O vértice é (4, 0), o eixo de simetria é x = 4 e as raízes são x = 4 (com multiplicidade 2)

O vértice é (0, 2), o eixo de simetria é y = 2 e as raízes são x = 2 (com multiplicidade 2)

O vértice é (2, 0), o eixo de simetria é x = 2 e as raízes são x = 2 (com multiplicidade 2)

5.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Qual é a importância do discriminante em uma equação quadrática?

O discriminante é irrelevante para resolver equações quadráticas

O discriminante é importante porque determina o número e tipo de raízes que uma equação quadrática possui.

O discriminante indica a inclinação da reta tangente à parábola

O discriminante determina o valor da constante na equação quadrática

6.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Explique como o valor do discriminante afeta o número e a natureza das raízes de uma equação quadrática.

O valor do discriminante afeta o número e a natureza das raízes de uma equação quadrática conforme descrito na explicação.

O valor do discriminante não tem impacto nas raízes da equação quadrática

O valor do discriminante afeta apenas o coeficiente linear da equação quadrática

O valor do discriminante determina apenas a parte imaginária das raízes da equação quadrática

7.

MULTIPLE CHOICE QUESTION

5 mins • 1 pt

Como a fórmula quadrática é usada para resolver equações do segundo grau?

A fórmula quadrática é usada para encontrar as raízes de uma equação do segundo grau.

A fórmula quadrática é usada para resolver equações do primeiro grau.

A fórmula quadrática é usada para calcular a área de um triângulo.

A fórmula quadrática é usada para determinar a média de um conjunto de números.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?