Numpy and pandas

Numpy and pandas

Professional Development

9 Qs

quiz-placeholder

Similar activities

Zodiac Signs - Aries

Zodiac Signs - Aries

KG - Professional Development

6 Qs

Excel Essentials

Excel Essentials

Professional Development

10 Qs

Rust - Codeshow - 2020 - 1

Rust - Codeshow - 2020 - 1

Professional Development

10 Qs

numpy

numpy

Professional Development

5 Qs

basics

basics

Professional Development

4 Qs

FinTech 03-2 Pandas

FinTech 03-2 Pandas

Professional Development

10 Qs

Trabert y Diadinamicas

Trabert y Diadinamicas

Professional Development

10 Qs

React

React

Professional Development

8 Qs

Numpy and pandas

Numpy and pandas

Assessment

Quiz

Other

Professional Development

Hard

Created by

Yassmine Riahi

Used 3+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat affiché du code suivant :
Print ( result )

Alice

25

Bob

error

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat affiché ?

[ 3 7 ]

[ 4 6 ]

10

error

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat de ce code ?

print ( result )

[ 8 6]

[7 9 ]

[10]

[ 11 8]

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Numpy library provides two data Structures : Series and DAtaFrame

True

False

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

To delete a column from a dataFrame df we use ?

df.delete (column)

df.remove(column)

df.drop(column )

df.dropna()

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

to add a new row in a daraframe we use the method :

append

add

insert

concat

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Pandas Series :

have immutable values but mutable size

have mutable values but immutable size

are two dimensional

are one dimensional

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

To show the first five rows in a dataframe we use :

df.first(5)

df.tail(5)

df.head()

df.start(5)

9.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

pour afficher la 2 eme ligne d'un Numpy Array ( 2D) nommé a :

a[ : , 1]

a[1 , :]

a[0]

a[: , 0]