Numpy and pandas

Numpy and pandas

Professional Development

9 Qs

quiz-placeholder

Similar activities

MR8

MR8

Professional Development

13 Qs

BAIG

BAIG

Professional Development

11 Qs

basics

basics

Professional Development

4 Qs

numpy

numpy

Professional Development

5 Qs

Recompte en placa aerobis mesòfils

Recompte en placa aerobis mesòfils

Professional Development

10 Qs

Session 3 Review

Session 3 Review

Professional Development

10 Qs

Entrance Quiz for Structural Timber Design

Entrance Quiz for Structural Timber Design

Professional Development

10 Qs

BigRentz Equipment Quiz

BigRentz Equipment Quiz

Professional Development

12 Qs

Numpy and pandas

Numpy and pandas

Assessment

Quiz

Other

Professional Development

Hard

Created by

Yassmine Riahi

Used 3+ times

FREE Resource

9 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat affiché du code suivant :
Print ( result )

Alice

25

Bob

error

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat affiché ?

[ 3 7 ]

[ 4 6 ]

10

error

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Quel est le resultat de ce code ?

print ( result )

[ 8 6]

[7 9 ]

[10]

[ 11 8]

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Numpy library provides two data Structures : Series and DAtaFrame

True

False

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

To delete a column from a dataFrame df we use ?

df.delete (column)

df.remove(column)

df.drop(column )

df.dropna()

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

to add a new row in a daraframe we use the method :

append

add

insert

concat

7.

MULTIPLE SELECT QUESTION

45 sec • 1 pt

Pandas Series :

have immutable values but mutable size

have mutable values but immutable size

are two dimensional

are one dimensional

8.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

To show the first five rows in a dataframe we use :

df.first(5)

df.tail(5)

df.head()

df.start(5)

9.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

pour afficher la 2 eme ligne d'un Numpy Array ( 2D) nommé a :

a[ : , 1]

a[1 , :]

a[0]

a[: , 0]