
Fonction Quadratique
Quiz
•
Mathematics
•
11th Grade
•
Practice Problem
•
Hard
mahmoud abdallah
Used 1+ times
FREE Resource
Enhance your content in a minute
10 questions
Show all answers
1.
MULTIPLE CHOICE QUESTION
1 min • 1 pt
Quel est le sommet d'une parabole ?
Le sommet d'une parabole est à l'infini
Le sommet d'une parabole se trouve aux coordonnées (-b/2a, c - b^2/4a)
Le sommet d'une parabole est à la racine carrée de 2
Le sommet d'une parabole est à l'origine
2.
MULTIPLE CHOICE QUESTION
1 min • 1 pt
Résolvez l'équation quadratique x^2 - 5x + 6 = 0 en factorisant.
(x - 1)(x - 6) = 0
(x - 2)(x - 3) = 0
(x + 2)(x - 3) = 0
(x - 2)(x + 3) = 0
3.
MULTIPLE CHOICE QUESTION
1 min • 1 pt
Convertir la fonction quadratique y = 2x^2 - 8x + 6 en forme canonique.
y = 2(x-2)^2 - 2
y = 2(x-3)^2 - 4
y = 2(x-1)^2 - 10
y = 2(x+2)^2 - 6
4.
MULTIPLE CHOICE QUESTION
1 min • 1 pt
Quelle est l'axe de symétrie d'une parabole ?
Un cercle centré sur le sommet de la parabole.
Une droite verticale passant par le sommet de la parabole.
Une ligne brisée traversant la parabole.
Une droite horizontale passant par le sommet de la parabole.
5.
MULTIPLE CHOICE QUESTION
1 min • 1 pt
Tracez le graphe de la fonction quadratique y = -3(x-2)^2 + 5.
The graph of the function y = -3(x-2)^2 + 5 is a downward-opening parabola with the vertex at (2, 5).
The graph of the function y = -3(x-2)^2 + 5 is a straight line passing through (2, 5).
The graph of the function y = -3(x-2)^2 + 5 is a sinusoidal curve.
The graph of the function y = -3(x-2)^2 + 5 is a circle centered at (2, 5).
6.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Appliquez la formule quadratique pour résoudre l'équation x^2 + 4x - 5 = 0.
x = 2 et x = -3
Les solutions sont x = 1 et x = -5.
x = 0 et x = -5
x = 3 et x = -4
7.
MULTIPLE CHOICE QUESTION
30 sec • 1 pt
Quel est le sommet d'une parabole ?
Le sommet d'une parabole est le point d'intersection avec l'axe des ordonnées.
Le sommet d'une parabole est le point le plus haut ou le plus bas de la courbe, situé au centre de symétrie.
Le sommet d'une parabole est le point le plus éloigné de l'axe de symétrie.
Le sommet d'une parabole est le point d'inflexion de la courbe.
Access all questions and much more by creating a free account
Create resources
Host any resource
Get auto-graded reports

Continue with Google

Continue with Email

Continue with Classlink

Continue with Clever
or continue with

Microsoft
%20(1).png)
Apple
Others
Already have an account?
Similar Resources on Wayground
13 questions
Chapter 1: Quadratic Functions and Equations in One Variable
Quiz
•
11th - 12th Grade
12 questions
SNT-Photographie
Quiz
•
9th - 11th Grade
10 questions
CALDIF_S5YS6_2024B
Quiz
•
11th Grade
11 questions
Determinantes
Quiz
•
10th - 12th Grade
10 questions
Ujian DIagnostik Matematik F2/F3/F4
Quiz
•
9th - 12th Grade
10 questions
Ulangan fungsi invers dan komposisi
Quiz
•
11th Grade
11 questions
Geometry Unit 3 Review
Quiz
•
9th Grade - University
10 questions
Maths Revision Quiz (1) - Grade 3
Quiz
•
3rd Grade - University
Popular Resources on Wayground
15 questions
Fractions on a Number Line
Quiz
•
3rd Grade
20 questions
Equivalent Fractions
Quiz
•
3rd Grade
25 questions
Multiplication Facts
Quiz
•
5th Grade
54 questions
Analyzing Line Graphs & Tables
Quiz
•
4th Grade
22 questions
fractions
Quiz
•
3rd Grade
20 questions
Main Idea and Details
Quiz
•
5th Grade
20 questions
Context Clues
Quiz
•
6th Grade
15 questions
Equivalent Fractions
Quiz
•
4th Grade
Discover more resources for Mathematics
12 questions
Add and Subtract Polynomials
Quiz
•
9th - 12th Grade
15 questions
Exponential Growth and Decay Word Problems Practice
Quiz
•
9th - 12th Grade
20 questions
Classifying Polynomials by Degree and Number of Terms
Quiz
•
11th Grade
17 questions
Explore Experimental and Theoretical Probability
Quiz
•
7th - 12th Grade
15 questions
Parallelogram Properties
Quiz
•
10th - 12th Grade
10 questions
Special Right Triangles
Quiz
•
11th Grade
18 questions
Solving Systems- Word Problems
Quiz
•
9th - 12th Grade
34 questions
7.4 Review Cubic and Cube Root Functions
Quiz
•
10th - 12th Grade
