Pandas ADSC Practice

Pandas ADSC Practice

1st Grade

20 Qs

quiz-placeholder

Similar activities

BIM1014 Quiz 2

BIM1014 Quiz 2

KG - University

15 Qs

DataFrame Operations Quiz

DataFrame Operations Quiz

1st Grade

20 Qs

Pemrograman 2

Pemrograman 2

1st Grade

25 Qs

PROBLEM SOLVING PART1 -D1M2T2

PROBLEM SOLVING PART1 -D1M2T2

1st - 5th Grade

15 Qs

Python Pages 10 to 26

Python Pages 10 to 26

1st - 5th Grade

15 Qs

National 5 Programming (VB and Theory)

National 5 Programming (VB and Theory)

1st - 11th Grade

20 Qs

Quiz 2 Sistem Komputer

Quiz 2 Sistem Komputer

1st - 10th Grade

20 Qs

Administración básica del sistema

Administración básica del sistema

1st Grade

15 Qs

Pandas ADSC Practice

Pandas ADSC Practice

Assessment

Quiz

Computers

1st Grade

Hard

Created by

Tejas Kalpathi

Used 2+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you sort it by City in ascending order and then by Age in descending order?

df.sort_values(by='City').sort_values(by='Age', ascending=False)

df.sort_values(by=['City', 'Age'], ascending=[True, False])

df.sort(['City', 'Age'], ascending=[True, False])

df.sort_values(by=['City', 'Age'], ascending=[False, True])

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you filter the DataFrame to select rows where Age is greater than 25 or City is 'Chicago'?

df[(df['Age'] > 25) & (df['City'] == 'Chicago')]

df[(df['Age'] > 25) | (df['City'] == 'Chicago')]

df.query('Age > 25 and City == "Chicago"')

df[df['Age'] > 25 and df['City'] == 'Chicago']

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you increase each employee's Salary by 10%?

df['Salary'] *= 1.10

df['Salary'] = df['Salary'] + 10000

df['Salary'] = df['Salary'].apply(lambda x: x * 1.10)

df['Salary'].update(df['Salary'] * 1.10)

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How do you drop the Age column from the DataFrame permanently?

df = df.drop('Age', axis=1)

df.drop(columns='Age', inplace=True)

df.remove('Age')

del df['Age']

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you fill missing values in the Age column with the mean age?

df['Age'].fillna(df['Age'].mean(), inplace=True)

df.fillna(df.mean(), inplace=True)

df['Age'] = df['Age'].replace(np.nan, df['Age'].mean())

df['Age'] = df['Age'].interpolate()

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you select only the Name and Salary columns from the DataFrame?

df[['Name', 'Salary']]

df.loc[:, ['Name', 'Salary']]

df.iloc[:, [0, 2]]

All of the above

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you rename the column Salary to Income?

df.rename(columns={'Salary': 'Income'}, inplace=True)

df.columns = ['Name', 'Income']

df.set_axis(['Name', 'Income'], axis=1, inplace=True)

df.rename_axis(columns='Income')

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?