Pandas ADSC Practice

Pandas ADSC Practice

1st Grade

20 Qs

quiz-placeholder

Similar activities

lesson 31

lesson 31

1st Grade

21 Qs

Keyboard

Keyboard

1st Grade

15 Qs

Asas JavaScript

Asas JavaScript

1st Grade - University

18 Qs

AV1\R1 3TEC_Ciência de Dados - Aula 01 a  16

AV1\R1 3TEC_Ciência de Dados - Aula 01 a 16

1st Grade - University

15 Qs

Prueba

Prueba

1st - 3rd Grade

18 Qs

Quiz 4

Quiz 4

1st - 10th Grade

20 Qs

Mikhail PS4 and  doubles

Mikhail PS4 and doubles

1st Grade

16 Qs

ASK F2 -KOD ARAHAN (PYTHON)

ASK F2 -KOD ARAHAN (PYTHON)

1st Grade - University

15 Qs

Pandas ADSC Practice

Pandas ADSC Practice

Assessment

Quiz

Computers

1st Grade

Hard

Created by

Tejas Kalpathi

Used 2+ times

FREE Resource

20 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you sort it by City in ascending order and then by Age in descending order?

df.sort_values(by='City').sort_values(by='Age', ascending=False)

df.sort_values(by=['City', 'Age'], ascending=[True, False])

df.sort(['City', 'Age'], ascending=[True, False])

df.sort_values(by=['City', 'Age'], ascending=[False, True])

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you filter the DataFrame to select rows where Age is greater than 25 or City is 'Chicago'?

df[(df['Age'] > 25) & (df['City'] == 'Chicago')]

df[(df['Age'] > 25) | (df['City'] == 'Chicago')]

df.query('Age > 25 and City == "Chicago"')

df[df['Age'] > 25 and df['City'] == 'Chicago']

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you increase each employee's Salary by 10%?

df['Salary'] *= 1.10

df['Salary'] = df['Salary'] + 10000

df['Salary'] = df['Salary'].apply(lambda x: x * 1.10)

df['Salary'].update(df['Salary'] * 1.10)

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How do you drop the Age column from the DataFrame permanently?

df = df.drop('Age', axis=1)

df.drop(columns='Age', inplace=True)

df.remove('Age')

del df['Age']

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

Given the following DataFrame, how would you fill missing values in the Age column with the mean age?

df['Age'].fillna(df['Age'].mean(), inplace=True)

df.fillna(df.mean(), inplace=True)

df['Age'] = df['Age'].replace(np.nan, df['Age'].mean())

df['Age'] = df['Age'].interpolate()

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you select only the Name and Salary columns from the DataFrame?

df[['Name', 'Salary']]

df.loc[:, ['Name', 'Salary']]

df.iloc[:, [0, 2]]

All of the above

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

How would you rename the column Salary to Income?

df.rename(columns={'Salary': 'Income'}, inplace=True)

df.columns = ['Name', 'Income']

df.set_axis(['Name', 'Income'], axis=1, inplace=True)

df.rename_axis(columns='Income')

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?