Elements of Statistical Inference

Elements of Statistical Inference

University

13 Qs

quiz-placeholder

Similar activities

Quality Management Quiz

Quality Management Quiz

University

17 Qs

RM Quiz-1

RM Quiz-1

University

17 Qs

Financial Econometrics Quiz

Financial Econometrics Quiz

University

10 Qs

Dissertation research recap

Dissertation research recap

University

12 Qs

Week 1 -  Statistical Theories and Application 2

Week 1 - Statistical Theories and Application 2

University

10 Qs

Banking quiz

Banking quiz

University

16 Qs

Hypothesis Testing

Hypothesis Testing

University

18 Qs

Business Statistics I Class - Final Review - Week 11

Business Statistics I Class - Final Review - Week 11

University

12 Qs

Elements of Statistical Inference

Elements of Statistical Inference

Assessment

Quiz

Business

University

Easy

Created by

Flavia Scarfò

Used 1+ times

FREE Resource

13 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Statistical inference is the process of...?

Process of generalizing or drawing conclusions. 

Process of generalizing. 

Process of sampling and drawing conclusion.

Process of sampling. 

Answer explanation

Statistical inference involves generalizing from a sample to a population, allowing us to draw conclusions based on data. The correct choice captures both aspects: generalizing and drawing conclusions.

2.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is the main goal of statistical inference?  

To predict data based on known models. 

To make conclusions about unknown population properties from sample data. 

To ensure a perfect representation of a population using samples. 

To compute probabilities of future outcomes without any uncertainty. 

Answer explanation

The main goal of statistical inference is to make conclusions about unknown population properties based on sample data. This allows researchers to estimate and draw insights about a larger group from a smaller subset.

3.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What does the Maximum Likelihood Estimator (MLE) seek to achieve? 

Maximize the likelihood function for a given parameter to estimate sample data. 

Minimize the error margin of sample predictions. 

Ensure the lowest possible variance for any estimate. 

Determine the probability of an event given past data. 

Answer explanation

The Maximum Likelihood Estimator (MLE) aims to maximize the likelihood function, which measures how well a given parameter explains the observed sample data. This makes the first choice the correct answer.

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Why is Fisher Information important in statistical inference? 

It measures the total variance in the data sample. 

It verifies whether a sample is representative of a population. 

It helps approximate the variability of MLEs and derive confidence intervals. 

It establishes the significance of statistical tests. 

Answer explanation

Fisher Information is crucial as it quantifies the amount of information that an observable random variable carries about an unknown parameter, aiding in approximating the variability of Maximum Likelihood Estimates (MLEs) and deriving confidence intervals.

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is one of the properties of MLE under regular conditions? 

MLE is always unbiased, regardless of sample size. 

MLE is not affected by the choice of the statistical model.

  1. MLE minimizes the bias-variance tradeoff by default. 

 

MLE is consistent, converging to the true value as the sample size grows. 

Answer explanation

The correct choice is that MLE is consistent, meaning it converges to the true parameter value as the sample size increases. This property ensures that with enough data, MLE provides accurate estimates.

6.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

What is the significance of a likelihood set in statistical inference? 

It shows the range of sample data that maximizes prediction intervals. 

It includes all parameter values where relative likelihood exceeds a threshold. 

It guarantees the accuracy of an estimate. 

  1. It determines the outcome of hypothesis tests. 

 

Answer explanation

The correct choice highlights that a likelihood set includes all parameter values where the relative likelihood exceeds a certain threshold, which is crucial for identifying plausible parameter estimates in statistical inference.

7.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Which statement best describes the difference between probability and statistical inference?

Probability uses observed data to infer the model, while statistical inference predicts data from a given model. 

Both probability and statistical inference predict future data based on past observations. 

Probability predicts data from a given model, while statistical inference uses observed data to infer the model. 

Statistical inference always requires known probability distributions, while probability does not involve data. 

Answer explanation

The correct choice highlights that probability predicts data based on a model, while statistical inference uses actual data to deduce or infer the underlying model. This distinction clarifies their roles in data analysis.

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?