Search Header Logo

Algebraic Rules Transformation

Authored by Barbara White

Mathematics

8th Grade

CCSS covered

Algebraic Rules Transformation
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

30 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this translation?

( x , y ) --> ( x , y + 4 )

( x , y ) --> ( x - 4 , y )

( x , y ) --> ( x , y - 4 )

( x , y ) --> ( x + 4 , y )

Tags

CCSS.HSG.CO.A.2

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Media Image

What is the algebraic representation that describes this reflection?

( x , y )--> ( x , -y )

( x , y )--> ( -x , y )

( x , y )--> ( y , -x )

( x , y )--> ( -y , x )

Tags

CCSS.8.G.A.3

CCSS.HSG.CO.A.5

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?