Asesmen Diagnostik Materi Komposisi Fungsi Kelas XI

Asesmen Diagnostik Materi Komposisi Fungsi Kelas XI

11th Grade

5 Qs

quiz-placeholder

Similar activities

Fungsi Linear

Fungsi Linear

11th Grade

10 Qs

5.1 Functions & 5.2 Composite Functions

5.1 Functions & 5.2 Composite Functions

12th Grade

10 Qs

DIAGNÓSTICO TERCERO

DIAGNÓSTICO TERCERO

12th Grade

10 Qs

FUNCION EXPLONENCIAL Y  LOGARITMICA DMPA 21

FUNCION EXPLONENCIAL Y LOGARITMICA DMPA 21

1st - 12th Grade

6 Qs

ฟังก์ชัน

ฟังก์ชัน

12th Grade

10 Qs

PENILAIAN HARIAN 1 X IPA/IPS

PENILAIAN HARIAN 1 X IPA/IPS

University

10 Qs

Funciones

Funciones

11th Grade

10 Qs

LATIHAN SOAL

LATIHAN SOAL

11th Grade

8 Qs

Asesmen Diagnostik Materi Komposisi Fungsi Kelas XI

Asesmen Diagnostik Materi Komposisi Fungsi Kelas XI

Assessment

Quiz

Created by

Hening Pitaloka

Mathematics

11th Grade

3 plays

Hard

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

3 mins • 10 pts

Diketahui f(x) = x2 + 2x + 1 dan g(x) = x + 5. Tentukan hasil dari operasi fungsi (f + g)(x) beserta domain dan range-nya!

(f + g)(x) = x2 + 3x + 6, Df+g = {x|x ∈ ℝ}, Rf+g = {y|y ≥ 15/4, y ∈ ℝ}

(f + g)(x) = x2 + 3x + 6, Df+g = {x|x ∈ ℝ}, Rf+g = {y|y ≤ 15/4, y ∈ ℝ}

(f + g)(x) = x2 + x + 6, Df+g = {x|x ∈ ℝ}, Rf+g = {y|y ≥ 15/4, y ∈ ℝ}

(f + g)(x) = x2 + x + 4, Df+g = {x|x ∈ ℝ}, Rf+g = {y|y ≤ 15/4, y ∈ ℝ}

(f + g)(x) = x2 + 3x + 4, Df+g = {x|x ∈ ℝ}, Rf+g = {y|y < 15/4, y ∈ ℝ}

2.

MULTIPLE CHOICE QUESTION

3 mins • 10 pts

Diketahui f(x) = √(x - 2) dan g(x) = √(6 - x), maka temukan bentuk fungsi baru dari operasi fungsi (f - g)(x) dan (f/g)(x), serta masing-masing domainnya!

(f - g)(x) = √(x - 2) - √(6 - x), Df-g = {x|2 ≤ x ≤ 6, x ∈ ℝ}

dan (f/g)(x) = √(x - 2)/√(6 - x) , Df/g = {x|2 ≤ x ≤ 6, x ∈ ℝ}

(f - g)(x) = √(x - 2) - √(6 - x), Df-g = {x|2 ≤ x < 6, x ∈ ℝ}

dan (f/g)(x) = √(x - 2)/√(6 - x) , Df/g = {x|2 ≤ x < 6, x ∈ ℝ}

(f - g)(x) = √(x - 2) - √(6 - x), Df-g = {x|2 ≤ x ≤ 6, x ∈ ℝ}

dan (f/g)(x) = √(x - 2)/√(6 - x) , Df/g = {x|2 ≤ x < 6, x ∈ ℝ}

(f - g)(x) = √(x - 2) - √(6 - x), Df-g = {x|x > 2, x ∈ ℝ}

dan (f/g)(x) = √(x - 2)/√(6 - x) , Df/g = {x|x < 6, x ∈ ℝ}

(f - g)(x) = √(x - 2) - √(6 - x), Df-g = {x|x ≥ 2, x ∈ ℝ}

dan (f/g)(x) = √(x - 2)/√(6 - x) , Df/g = {x|x < 6, x ∈ ℝ}

3.

MULTIPLE CHOICE QUESTION

3 mins • 10 pts

Diketahui fungsi f(x) = 3x + 15 dan g(x) = -x - 3, maka domain dan range dari (f × g)(x)!

Df×g = {x|x ∈ ℝ} dan Rf×g = {y|y ≥ 3, y ∈ ℝ}

Df×g = {x|x ∈ ℝ} dan Rf×g = {y|y ≥ -3, y ∈ ℝ}

Df×g = {x|x ∈ ℝ} dan Rf×g = {y|y ≤ 3, y ∈ ℝ}

Df×g = {x|x ∈ ℝ} dan Rf×g = {y|y < 3, y ∈ ℝ}

Df×g = {x|x ∈ ℝ} dan Rf×g = {y|y ≤ -3, y ∈ ℝ}

4.

MULTIPLE CHOICE QUESTION

3 mins • 13 pts

Misalkan fungsi f dirumuskan dengan f(x) = x + 2 dan g dirumuskan dengan g(x) = x3 .

Dengan menggunakan rumus f(x) = x + 2, untuk

x = 1 → f(1) = 1 + 2 = 3

x = 2 → f(2) = ... + 2 = ...

x = 3 → f(3) = ...

x = t → f(t) = ...

Jika x diganti dengan g(x), diperoleh f(g(x)) = ... + 2 = ...

Misalkan fungsi h(x) = f(g(x)) = ...

Fungsi  yang diperoleh dengan cara diatas, dinamakan fungsi komposisi g dan f. Fungsi ini dapat ditulis dengan f ∘ g dibaca “f bundaran g’’.

Dengan cara yang sama, maka g(f(x)) adalah ...

(g ∘ f)(x) = x3 + 2

(g ∘ f)(x) = x3 + 6x + 6

(g ∘ f)(x) = (x + 2)3

(g ∘ f)(x) = x3 + 2x2

(g ∘ f)(x) = x3 + 3x2 + 2x + 2

5.

MULTIPLE CHOICE QUESTION

3 mins • 13 pts

Diketahui f(x) = 3x2 + 2x dan g(x) = 5x - 4, maka penyelesaian dari fungsi komposisi (f ∘ g)(x) adalah ...

75x2 - 110x + 40

50x2 - 100x + 40

25x2 - 100x + 40

75x2 - 100x + 40

50x2 - 110x + 40