AP Calculus BC Formulas & Concepts

AP Calculus BC Formulas & Concepts

9th - 12th Grade

18 Qs

quiz-placeholder

Similar activities

AP Calc Derivatives & Antiderivatives

AP Calc Derivatives & Antiderivatives

12th Grade

20 Qs

Trig Identity Review

Trig Identity Review

9th - 12th Grade

15 Qs

HW 5.1 Verifying Trigonometric Identities

HW 5.1 Verifying Trigonometric Identities

10th Grade

15 Qs

Area of a sector

Area of a sector

8th - 12th Grade

15 Qs

AP Precalculus Midterm Review

AP Precalculus Midterm Review

11th Grade

15 Qs

Translations of Functions

Translations of Functions

11th Grade

17 Qs

Nth Roots Review

Nth Roots Review

11th Grade

15 Qs

Calculus - The Essentials (Through Derivative Rules)

Calculus - The Essentials (Through Derivative Rules)

9th Grade - University

20 Qs

AP Calculus BC Formulas & Concepts

AP Calculus BC Formulas & Concepts

Assessment

Quiz

Mathematics

9th - 12th Grade

Hard

Created by

Quizizz Content

FREE Resource

18 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit Comparison Test

If lim(n→∞) a_n/b_n is finite and positive, then ∑a_n and ∑b_n behave the same (both converge or diverge)

If lim(n→∞) a_n/b_n is zero, then ∑a_n converges and ∑b_n diverges

If lim(n→∞) a_n/b_n is infinite, then ∑a_n converges and ∑b_n diverges

If lim(n→∞) a_n/b_n is finite and negative, then ∑a_n and ∑b_n behave the same (both converge or diverge)

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Horizontal and Vertical Tangents

Horizontal: f'(x) = 0 (numerator = 0)

Horizontal: f'(x) DNE (denominator = 0)

Vertical: f'(x) = 0 (numerator = 0)

Vertical: f'(x) DNE (numerator = 0)

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the definition of a Horizontal Asymptote?

Let \( y = b \)

Let \( y = ax + b \)

Let \( y = \frac{1}{x} \)

Let \( y = x^2 + b \)

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Odd Function

Symmetric over origin

f(-x) = -f(x)

Symmetric over the y-axis

f(-x) = f(x)

Has a maximum point

f'(x) = 0

Always increasing

f'(x) > 0

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Definition of a Limit

@@\lim_{x\rightarrow a}f\left(x\right)@@ if and only if @@\lim_{x\rightarrow a^-}f\left(x\right)=\lim_{x\rightarrow a^+}f\left(x\right)=L@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ if and only if @@\lim_{x\rightarrow a^-}f\left(x\right)\neq\lim_{x\rightarrow a^+}f\left(x\right)@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ exists if and only if @@f(a) = L@@

@@\lim_{x\rightarrow a}f\left(x\right)@@ is undefined if @@f(a)\neq L@@

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Limit Definition of the Derivative #1

@@f'ig(xig)= rac{fig(x+hig)-fig(xig)}{h}@@

@@f'ig(xig)= rac{fig(xig)-fig(x-hig)}{h}@@

@@f'ig(xig)= rac{fig(x+hig)+fig(xig)}{h}@@

@@f'ig(xig)= rac{fig(xig)-fig(x+hig)}{h}@@

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Average rate of change/slope of the secant line over [a, b]

@@ rac{fig(big)-fig(aig)}{b-a}@@

@@ rac{fig(aig)-fig(big)}{b-a}@@

@@ rac{fig(big)-fig(aig)}{a-b}@@

@@ rac{fig(aig)+fig(big)}{b-a}@@

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?