Deep Learning CNN Convolutional Neural Networks with Python - Calculating Number of Weights of DNN Solution

Deep Learning CNN Convolutional Neural Networks with Python - Calculating Number of Weights of DNN Solution

Assessment

Interactive Video

Information Technology (IT), Architecture

University

Hard

Created by

Quizizz Content

FREE Resource

The video tutorial explains the structure of a neural network's input hidden layer, detailing the number of inputs and the calculation of trainable parameters. It covers the breakdown of parameters for different neurons and concludes with a total count of 35 trainable parameters.

Read more

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How many inputs does the first input hidden layer receive?

2 inputs

5 inputs

3 inputs

4 inputs

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of parameters for the first input hidden layer?

20 parameters

16 parameters

12 parameters

24 parameters

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How many inputs are there for each of the three neurons discussed in the second section?

6 inputs

5 inputs

4 inputs

3 inputs

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of parameters for the neurons with five inputs each?

25 parameters

10 parameters

15 parameters

20 parameters

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of trainable parameters in the network?

35 parameters

32 parameters

30 parameters

40 parameters