Deep Learning CNN Convolutional Neural Networks with Python - Calculating Number of Weights of DNN Solution

Deep Learning CNN Convolutional Neural Networks with Python - Calculating Number of Weights of DNN Solution

Assessment

Interactive Video

Information Technology (IT), Architecture

University

Practice Problem

Hard

Created by

Wayground Content

FREE Resource

The video tutorial explains the structure of a neural network's input hidden layer, detailing the number of inputs and the calculation of trainable parameters. It covers the breakdown of parameters for different neurons and concludes with a total count of 35 trainable parameters.

Read more

5 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How many inputs does the first input hidden layer receive?

2 inputs

5 inputs

3 inputs

4 inputs

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of parameters for the first input hidden layer?

20 parameters

16 parameters

12 parameters

24 parameters

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

How many inputs are there for each of the three neurons discussed in the second section?

6 inputs

5 inputs

4 inputs

3 inputs

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of parameters for the neurons with five inputs each?

25 parameters

10 parameters

15 parameters

20 parameters

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the total number of trainable parameters in the network?

35 parameters

32 parameters

30 parameters

40 parameters