Taller de repaso Tercer Corte

Taller de repaso Tercer Corte

Professional Development

16 Qs

quiz-placeholder

Similar activities

Bài kiểm tra VSATTP tại cửa hàng

Bài kiểm tra VSATTP tại cửa hàng

1st Grade - Professional Development

11 Qs

Números Enteros (Z)

Números Enteros (Z)

1st Grade - Professional Development

12 Qs

statistiques niveau 1

statistiques niveau 1

Professional Development

20 Qs

Ulangan Harian Pola Barisan dan Bilangan

Ulangan Harian Pola Barisan dan Bilangan

Professional Development

20 Qs

Sumatoria

Sumatoria

6th Grade - Professional Development

14 Qs

CheckPoint Primer Corte

CheckPoint Primer Corte

University - Professional Development

13 Qs

Revisão de Progressão aritmética

Revisão de Progressão aritmética

11th Grade - Professional Development

20 Qs

Miscellaneous

Miscellaneous

KG - Professional Development

20 Qs

Taller de repaso Tercer Corte

Taller de repaso Tercer Corte

Assessment

Quiz

Mathematics

Professional Development

Hard

Created by

Fabian Muñoz

Used 7+ times

FREE Resource

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La FFT de los números:
  {1i,2+2i,3+i,4}\ \left\{1-i,2+2i,3+i,4\right\} 
corresponde a: 

 {10+2i,0,22i,4+4i}\left\{10+2i,0,-2-2i,4+4i\right\}  

 {10+4i,22i,6i,4}\left\{10+4i,-2-2i,-6i,-4\right\}  

 {10+2i,0,22i,44i}\left\{10+2i,0,-2-2i,-4-4i\right\}  

 {10+4i,2+2i,6i,4}\left\{10+4i,2+2i,-6i,4\right\}  

2.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La FFT de los números:
 {1,2,3,4}\left\{1,-2,3,-4\right\} 
Corresponde a: 

 {2,22i,10,2+2i}\left\{2,-2-2i,10,-2+2i\right\}  

 {2,2+2i,10,22i}\left\{-2,2+2i,10,-2-2i\right\}  

 {2,22i,10,22i}\left\{2,-2-2i,10,-2-2i\right\}  

 {2,22i,10,2+2i}\left\{-2,-2-2i,10,-2+2i\right\}  

3.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

En la transformada discreta de Fourier para los valores complejos  {1/2,5/4i/2,1,1/4+i/4}\left\{1/2,5/4-i/2,-1,1/4+i/4\right\} , la magnitud más grande que alcanza el espectro de amplitud corresponde:

 954\frac{\sqrt{95}}{4}  

 964\frac{\sqrt{96}}{4}  

 974\frac{\sqrt{97}}{4}  

 984\frac{\sqrt{98}}{4}  

4.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la sucesión 23nu[n3]\frac{2}{3^n}u\left[n-3\right] corresponde a: 

 2z327z9\frac{2z^3}{27z-9}  

 2z427z9\frac{2z^4}{27z-9}  

 227z39z2\frac{2}{27z^3-9z^2}  

 227z49z3\frac{2}{27z^4-9z^3}  

5.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la función discreta: δ(n+3)5δ(n+1)+12nu[n]\delta\left(n+3\right)-5\delta\left(n+1\right)+\frac{1}{2^n}u\left[-n\right] 
corresponde a: 

 2z411z3+5z212z1\frac{2z^4-11z^3+5z^2-1}{2z-1}  

 2z411z3+5z2+12z1\frac{2z^4-11z^3+5z^2+1}{2z-1}  

 2z4+11z3+5z212z1\frac{2z^4+11z^3+5z^2-1}{2z-1}  

 2z4+11z3+5z2+12z1\frac{2z^4+11z^3+5z^2+1}{2z-1}  

6.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta de la función discreta: x[n]=cos(π2n)u[n1]x\left[n\right]=\cos\left(\frac{\pi}{2}n\right)u\left[n-1\right] 
corresponde a:

 1z2+1\frac{1}{z^2+1}  

 1z2+1\frac{-1}{z^2+1}  

 11z2\frac{1}{1-z^2}  

 1z21\frac{1}{z^2-1}  

7.

MULTIPLE CHOICE QUESTION

15 mins • 1 pt

La transformada zeta inversa de la función:
 X(z)=12z+6z2+z6X\left(z\right)=\frac{12z+6}{z^2+z-6} 
sobre la región compleja z>3\left|z\right|>3 , en términos de funciones discretas, corresponde a: 

 (3(2)n2(3)n)u(n)δ(n)\left(3\left(2\right)^n-2\left(-3\right)^n\right)u\left(n\right)-\delta\left(n\right)  

 (3(2)n+2(3)n)u(n)δ(n)\left(3\left(2\right)^n+2\left(-3\right)^n\right)u\left(n\right)-\delta\left(n\right)  

 (32n+2(3)n)u(n)δ(n)\left(\frac{3}{2^n}+\frac{2}{\left(-3\right)^n}\right)u\left(n\right)-\delta\left(n\right)  

 (32n2(3)n)u(n)δ(n)\left(\frac{3}{2^n}-\frac{2}{\left(-3\right)^n}\right)u\left(n\right)-\delta\left(n\right)  

Create a free account and access millions of resources

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

By signing up, you agree to our Terms of Service & Privacy Policy

Already have an account?