Search Header Logo

ぐらぐらインテグラル⑤

Authored by Kenji Takei

Mathematics

11th - 12th Grade

Used 10+ times

ぐらぐらインテグラル⑤
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

8 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt


 xnx^n  の不定積分の公式を選べ

 nn  は 00  以上の整数)

 xnbx=1n+1xn+1+C\int_{ }^{ }x^nbx=\frac{1}{n+1}x^{n+1}+C  

 xndx=1n1xn1+C\int_{ }^{ }x^ndx=\frac{1}{n-1}x^{n-1}+C  

 xndx=1n+1xn+1+C\int_{ }^{ }x^ndx=\frac{1}{n+1}x^{n+1}+C  

 xndx=1n+1xn1+C\int_{ }^{ }x^ndx=\frac{1}{n+1}x^{n-1}+C  

この中にはない

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 (43x)2dx\int_{ }^{ }\left(4-3x\right)^2dx  を求めよ(積分定数C)

(ヒント: 1a (ax+b)n+1n+1+C\frac{1}{a}\ \frac{\left(ax+b\right)^{n+1}}{n+1}+C  )

 19(3x+4)3+C\frac{1}{9}\left(3x+4\right)^3+C  

 19(4x3)3+C-\frac{1}{9}\left(4x-3\right)^3+C  

 19(3x4)3+C\frac{1}{9}\left(3x-4\right)^3+C  

 13(3x2)3+C-\frac{1}{3}\left(3x-2\right)^3+C  

この中に答えはない

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 x(x1)dx\int_{ }^{ }x\left(x-1\right)dx  を求めよ

(積分定数C)

 13x312x2+C\frac{1}{3}x^3-\frac{1}{2}x^2+C  

 13x3+12x2+C\frac{1}{3}x^3+\frac{1}{2}x^2+C  

 x3+x2+Cx^3+x^2+C  

 x312x2+Cx^3-\frac{1}{2}x^2+C  

この中に答えはない

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 f(x)=2x2f'\left(x\right)=2x^2  , f(3)=0f\left(3\right)=0  を満たす関数 f(x)f\left(x\right)  を求めよ



 f(x)=23x318f\left(x\right)=\frac{2}{3}x^3-18  

 f(x)=23x3+18f\left(x\right)=\frac{2}{3}x^3+18  

 f(x)=x318f\left(x\right)=x^3-18  

 f(x)=x3+18f\left(x\right)=x^3+18  

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 (x1)(3x+1)dx\int_{ }^{ }\left(x-1\right)\left(3x+1\right)dx  を求めよ。

(積分定数をCとする)



 x3x2x+Cx^3-x^2-x+C  

 13x3x2x+C\frac{1}{3}x^3-x^2-x+C  

 x3x2+x+Cx^3-x^2+x+C  

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 (t+2)2dt\int_{ }^{ }\left(t+2\right)^2dt  を求めよ

(積分定数をCとする)

 13t3+2t2+4t+C\frac{1}{3}t^3+2t^2+4t+C  

 13t2+2t2+4t+C\frac{1}{3}t^2+2t^2+4t+C  

 3t3+2t2+4t+C3t^3+2t^2+4t+C  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

 (3x256)3dx\int_{ }^{ }\left(3x-256\right)^3dx  を求めよ

(積分定数はCとする)

 116(3x256)4\frac{1}{16}\left(3x-256\right)^4  

 112(3x256)4\frac{1}{12}\left(3x-256\right)^4  

 112(3x256)3+C\frac{1}{12}\left(3x-256\right)^3+C  

 112(3x256)4+C\frac{1}{12}\left(3x-256\right)^4+C  

 116(3x256)3+C\frac{1}{16}\left(3x-256\right)^3+C  

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?