Search Header Logo

ln review

Authored by Steve warner

12th Grade

CCSS covered

Used 3+ times

ln review
AI

AI Actions

Add similar questions

Adjust reading levels

Convert to real-world scenario

Translate activity

More...

    Content View

    Student View

16 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddxlnx=\frac{d}{dx}\ln\sqrt{x}=  

 12x\frac{1}{2\sqrt{x}}  

 1x2\frac{1}{x^2}  

 12x\frac{1}{2x}  

 x2\frac{x}{2}  

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddx(ln5x)=\frac{d}{dx}\left(\ln5x\right)=  

 1x\frac{1}{x}  

 15x\frac{1}{5x}  

 5x\frac{5}{x}  

5x

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddx(ex+1)\frac{d}{dx}\left(\sqrt{e^x+1}\right)  

 12ex+1\frac{1}{2\sqrt{e^x+1}}  

 ex2ex+1\frac{e^x}{2\sqrt{e^x+1}}  

 exex+1\frac{e^x}{\sqrt{e^x+1}}  

 12exex+1\frac{1}{2e^x\sqrt{e^x+1}}  

4.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

When looking at the problem:

 ln(xx2+1)\ln\left(\frac{x}{x^2+1}\right)  
How should you approach this?

Do the derivative of the ln, and then do the quotient rule. 

Do the chain rule. 

Rewrite the problem as: 
 lnxln(x2+1)\ln x-\ln\left(x^2+1\right)  , and then do two separate derivatives of ln. . 

Raise both sides to the e power. 

5.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 f(x)=e(x21)f\left(x\right)=e^{\left(x^2-1\right)}  
 f(1)=f'\left(1\right)=  

 22  

 00  

 e2e^2  

 11  

Tags

CCSS.8.F.A.1

CCSS.HSF.IF.A.1

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 ddx(lnx2)=\frac{d}{dx}\left(\ln x^2\right)=  

 2lnx2\ln x  

 2x2\frac{2}{x^2}  

 2x\frac{2}{x}  

 1x2\frac{1}{x^2}  

7.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

 log4x=16\log_4x=16 

  x = 

2

 416 or 4,294,967,2964^{16}\ or\ 4,294,967,296  

4

64

Access all questions and much more by creating a free account

Create resources

Host any resource

Get auto-graded reports

Google

Continue with Google

Email

Continue with Email

Classlink

Continue with Classlink

Clever

Continue with Clever

or continue with

Microsoft

Microsoft

Apple

Apple

Others

Others

Already have an account?