Quick warm up - Basic Derivatives

Quick warm up - Basic Derivatives

11th Grade - University

6 Qs

quiz-placeholder

Similar activities

DIFFERENTIAL EQUATIONS (MMR w4)

DIFFERENTIAL EQUATIONS (MMR w4)

12th Grade - University

10 Qs

First Order Linear Differential Equations

First Order Linear Differential Equations

12th Grade - University

10 Qs

Differential Equations - Separable Variable Method

Differential Equations - Separable Variable Method

University

10 Qs

Implicit Differentiation

Implicit Differentiation

10th Grade - University

11 Qs

DIFFERENTIATION

DIFFERENTIATION

University

10 Qs

Differentiation (1.1 - 1.4)

Differentiation (1.1 - 1.4)

10th Grade - University

10 Qs

Examen calculo diferencial 2do parcial

Examen calculo diferencial 2do parcial

University

11 Qs

Differentiate logarithms

Differentiate logarithms

University

10 Qs

Quick warm up - Basic Derivatives

Quick warm up - Basic Derivatives

Assessment

Quiz

Mathematics

11th Grade - University

Medium

CCSS
HSF.IF.A.2

Standards-aligned

Created by

Alan Paul Galindo Maldonado

Used 30+ times

FREE Resource

6 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Find f'(x) if f(x)=x2
2x
x2
2
2x2

Tags

CCSS.HSF.IF.A.2

2.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find the derivative of the given function

g(x) = 6 + ⅔ x

6

12

6 + ⅔

3.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find h'(x) if h(x)=5x3-2x

3x2

15x2-2

15x2

15x2-2x

Tags

CCSS.HSF.IF.A.2

4.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find the derivative of the given function
f(x) = x4 + 4x- 2x2
x3 + x- x
4x3 + 12x+ 4x
4x + 12x - 4x
4x3 + 12x- 4x

5.

MULTIPLE CHOICE QUESTION

2 mins • 1 pt

Find f '(2)  if
f(x) = x2 + 2x
2x + 2
6
12
2x

Tags

CCSS.HSF.IF.A.2

6.

MULTIPLE CHOICE QUESTION

1 min • 1 pt

Find dydx\frac{\text{d}y}{\text{d}x}  if 
 y=xy=\sqrt{x}  

 dydx=x\frac{\text{d}y}{\text{d}x}=\sqrt{x}  

 dydx=2x\frac{\text{d}y}{\text{d}x}=2x  

 dydx=12x12\frac{\text{d}y}{\text{d}x}=\frac{1}{2}x^{\frac{1}{2}}  

 dydx=12x12\frac{\text{d}y}{\text{d}x}=\frac{1}{2}x^{-\frac{1}{2}}