Conic Section: Ellipse (Pretest)

Conic Section: Ellipse (Pretest)

11th - 12th Grade

15 Qs

quiz-placeholder

Similar activities

Properties of Rational Functions

Properties of Rational Functions

10th - 12th Grade

20 Qs

Hyperbola Practice

Hyperbola Practice

10th - 12th Grade

10 Qs

Unit 5 Test #1 Review (Activity 25 & 26)

Unit 5 Test #1 Review (Activity 25 & 26)

9th - 12th Grade

20 Qs

Ellipse

Ellipse

11th Grade

14 Qs

PH TURUNAN

PH TURUNAN

11th Grade

12 Qs

Limit dan Turunan Fungsi Aljabar

Limit dan Turunan Fungsi Aljabar

12th Grade

10 Qs

Toán 8

Toán 8

3rd - 12th Grade

15 Qs

Differentiation Rules

Differentiation Rules

12th Grade

20 Qs

Conic Section: Ellipse (Pretest)

Conic Section: Ellipse (Pretest)

Assessment

Quiz

Mathematics

11th - 12th Grade

Medium

CCSS
HSG.GPE.A.1

Standards-aligned

Created by

Charis Valle

Used 44+ times

FREE Resource

15 questions

Show all answers

1.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following equations define an ellipse with center at  (0, 0)(0,\ 0)  and with its major axis at the x -axis?

 x2a2y2b2=1\frac{x^2}{a^2}-\frac{y^2}{b^2}=1  

 x2b2y2a2=1\frac{x^2}{b^2}-\frac{y^2}{a^2}=1  

 x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1  

 x2b2+y2a2=1\frac{x^2}{b^2}+\frac{y^2}{a^2}=1  

Tags

CCSS.HSG.GPE.A.1

2.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following is the center and vertices of the ellipse:  x249+y24=1\frac{x^2}{49}+\frac{y^2}{4}=1  ?

center: (7, 0) ; vertices: (0, –2), (0, 2)

center: (0, 0) ; vertices: (–2, 0), (2, 0)

center: (0, 0) ;  vertices: (0, –7), (0, 7)

center: (0, 0) ; vertices: (–7, 0), (7, 0)

Tags

CCSS.HSG.GPE.A.1

3.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

If an ellipse has its center at the origin and its endpoints in each axis are (8, 0), (-8, 0) and (0,6), (0,-6), which of the following represents its equation?

 x264+y236=1\frac{x^2}{64}+\frac{y^2}{36}=1  

 x236+y264=1\frac{x^2}{36}+\frac{y^2}{64}=1  

 x264y236=1\frac{x^2}{64}-\frac{y^2}{36}=1  

 x236+y264=1\frac{x^2}{36}+\frac{y^2}{64}=1  

4.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following describes an ellipse with its center at the origin, focus at (0,4)(0,4) and vertex at (0,7)(0,7) ?

 x249+y233=1\frac{x^2}{49}+\frac{y^2}{33}=1  

 x233+y249=1\frac{x^2}{33}+\frac{y^2}{49}=1  

 x249y233=1\frac{x^2}{49}-\frac{y^2}{33}=1  

 x233y249=1\frac{x^2}{33}-\frac{y^2}{49}=1  

Tags

CCSS.HSG.GPE.A.1

5.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

What is the standard form of the equation of the ellipse with its foci at (±4, 0) and a major axis of length 12?

 x220y236=1\frac{x^2}{20}-\frac{y^2}{36}=1  

 x236y220=1\frac{x^2}{36}-\frac{y^2}{20}=1  

 x220+y236=1\frac{x^2}{20}+\frac{y^2}{36}=1  

 x236+y220=1\frac{x^2}{36}+\frac{y^2}{20}=1  

Tags

CCSS.HSG.GPE.A.1

6.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following equations shows the standard form of an ellipse whose major axis is vertical, with the center located at  (h,k)(h,k) ?

 (xh)2a2+(yk)2b2=1\frac{\left(x-h\right)^2}{a^2}+\frac{\left(y-k\right)^2}{b^2}=1  

 (xh)2a2(yk)2b2=1\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1  

 (xh)2b2+(yk)2a2=1\frac{\left(x-h\right)^2}{b^2}+\frac{\left(y-k\right)^2}{a^2}=1  

 (xh)2b2(yk)2a2=1\frac{\left(x-h\right)^2}{b^2}-\frac{\left(y-k\right)^2}{a^2}=1  

7.

MULTIPLE CHOICE QUESTION

30 sec • 1 pt

Which of the following equations satisfy the given conditions: parallel to the x –axis, center at (2, 5), longer axis of length 12 and shorter axis of length 5?

 (x5)225+(y2)236=1\frac{\left(x-5\right)^2}{25}+\frac{\left(y-2\right)^2}{36}=1  

 (x2)225+(y5)236=1\frac{\left(x-2\right)^2}{25}+\frac{\left(y-5\right)^2}{36}=1  

 (x5)236+(y2)225=1\frac{\left(x-5\right)^2}{36}+\frac{\left(y-2\right)^2}{25}=1  

 (x2)236+(y5)225=1\frac{\left(x-2\right)^2}{36}+\frac{\left(y-5\right)^2}{25}=1  

Create a free account and access millions of resources

Create resources
Host any resource
Get auto-graded reports
or continue with
Microsoft
Apple
Others
By signing up, you agree to our Terms of Service & Privacy Policy
Already have an account?